

ibm.com/redbooks

Java Connectors
for CICS
Featuring the J2EE Connector Architecture

Phil Wakelin
Martin Keen

Richard Johnson
Daniel Cerecedo Diaz

Use CICS J2EE resource adapters and
deploy applications to WebSphere

Develop applications using the
Enterprise Access Builder

Understand the J2EE CCI and
the CTG base classes

Front cover

Java Connectors for CICS:
Featuring the J2EE Connector Architecture

March 2002

International Technical Support Organization

SG24-6401-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 2002)

This edition applies to CICS Transaction Gateway V4.0.1, VisualAge for Java V4.0, WebSphere
Studio Application Developer V4, WebSphere Application Server Advanced Edition V4.0.1

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page vii.

Contents

Special notices . vii

IBM trademarks . viii

Preface . ix
The team that wrote this redbook. x
Notice . xi
Comments welcome. xi

Part 1. Introduction . 1

Chapter 1. Java connectors for CICS . 3
1.1 CICS Transaction Gateway. 4
1.2 CTG APIs . 4
1.3 CICS CCF connector. 6
1.4 CICS Connector for CICS TS . 6
1.5 J2EE connectors . 7

Chapter 2. CICS Transaction Gateway . 9
2.1 CTG: interfaces . 10
2.2 CTG: infrastructure . 12

2.2.1 Gateway daemon . 13
2.2.2 Client daemon . 15
2.2.3 Configuration tool . 15
2.2.4 Terminal Servlet . 16

Chapter 3. CICS and the J2EE Connector Architecture. 17
3.1 J2EE Connector Architecture . 18

3.1.1 Components of the J2EE Connector Architecture 19
3.1.2 Managed and non-managed environments 20
3.1.3 The Common Connector Framework . 20

3.2 Common Client Interface. 21
3.2.1 CCI overview. 22
3.2.2 Using the CCI classes. 22

3.3 System contracts . 24
3.3.1 Connection management . 24
3.3.2 Transaction management . 25
3.3.3 Security management . 29

3.4 CICS resource adapters . 29
© Copyright IBM Corp. 2002 iii

3.4.1 ECI resource adapter . 29
3.4.2 EPI resource adapter . 30

Part 2. Connecting to COMMAREA based CICS programs. 33

Chapter 4. ECI and ESI applications . 35
4.1 Base classes overview . 36

4.1.1 JavaGateway overview . 37
4.1.2 ECIRequest overview . 39
4.1.3 ESIRequest overview . 40

4.2 Synchronous ECI calls . 40
4.2.1 ECIRequest configuration . 41
4.2.2 Program flow . 41

4.3 Asynchronous ECI calls . 44
4.3.1 Reply solicitation calls . 44
4.3.2 Program flow . 45
4.3.3 Callback objects . 48

4.4 ESI calls . 53
4.5 Extended logical units of work. 56
4.6 Tracing . 61
4.7 Exception handling . 64

4.7.1 ECI return codes . 64
4.7.2 ESI return codes . 65
4.7.3 Implementing an exception handling framework 66

Chapter 5. CCI applications: ECI based . 71
5.1 Using the CCI . 72

5.1.1 Writing a simple CCI application . 73
5.1.2 Tracing . 78

5.2 Using the Enterprise Access Builder . 79
5.2.1 Creating a Record out of a COMMAREA . 79
5.2.2 Creating a Command bean . 85
5.2.3 Migrating a CCF application . 91

5.3 Asynchronous calls . 92
5.4 Extended logical units of work. 95
5.5 Using JNDI . 100

5.5.1 Using JNDI with the CCI . 101
5.5.2 Using JNDI with the EAB . 103
5.5.3 Using JNDI with a Command bean . 105

5.6 Exception handling . 106
5.6.1 Developing an exception handling routine 109

Chapter 6. CCI applications in a managed environment 111
6.1 WebSphere managed environment. 112
iv Java Connectors for CICS

6.2 Configuring WebSphere Application Server . 115
6.3 Creating the CCI application . 124

6.3.1 Configuring WebSphere Studio Application Developer. 125
6.3.2 Creating an enterprise bean . 129
6.3.3 Editing the EJB deployment descriptor . 137

6.4 Testing the enterprise bean. 139
6.5 Deploying the application to WebSphere . 149

6.5.1 Enabling JNDI in the application . 149
6.5.2 Exporting the application from Application Developer. 149
6.5.3 Installing the EAR file into WebSphere . 150

Part 3. Connecting to 3270 based CICS transactions . 153

Chapter 7. EPI support classes . 155
7.1 Creating a simple EPI application . 156

7.1.1 Using the EPIGateway class. 157
7.1.2 Using the Terminal class. 159
7.1.3 Using the Screen and Field classes . 162

7.2 Extending the EPI application . 165
7.2.1 Using the Map class and the BMSMapConvert utility 166
7.2.2 Exception handling . 169

7.3 Connecting to secured CICS transactions . 174
7.3.1 Signon capable terminals . 175
7.3.2 Signon incapable terminals . 178

Chapter 8. CCI applications: EPI based . 181
8.1 Using the CCI . 182

8.1.1 Writing a simple CCI application . 183
8.1.2 Extending a CCI application . 188
8.1.3 Tracing . 192

8.2 Using the Enterprise Access Builder . 193
8.2.1 Writing a simple EAB application . 194
8.2.2 Extending an EAB application. 203
8.2.3 Migrating a CCF application . 210

8.3 Connecting to secured CICS transactions . 212
8.3.1 Signon capable terminals . 213
8.3.2 Signon incapable terminals . 214

Part 4. Appendices . 217

Appendix A. Configuring the CICS connectors in VisualAge for Java. . 219
A.1 Installing VisualAge for Java. 220
A.2 Configuring VisualAge for Java. 221

A.2.1 Updating the Enterprise Access Builder . 221
 Contents v

A.2.2 Updating the connector projects with 1.0 specification classes . . . 222

Appendix B. Data conversion. 227
B.1 Conversion within Java . 228
B.2 Conversion within CICS: DFHCNV templates . 232
B.3 EAB and the Java Record Framework . 237

Appendix C. Sample CICS programs. 241
C.1 ECIADDER . 242
C.2 ECIPROG . 244
C.3 EPIPROG . 246
C.4 SWAP . 249
C.5 TRADER . 253

Appendix D. Additional material . 261
Locating the Web material . 261
Using the Web material . 262

System requirements for downloading the Web material 263
How to use the Web material . 263

Abbreviations and acronyms . 265

Related publications . 267
IBM Redbooks . 267

Other resources . 267
Referenced Web sites . 267
How to get IBM Redbooks . 268

IBM Redbooks collections. 268

Index . 269
vi Java Connectors for CICS

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2002 vii

IBM trademarks

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Other company trademarks
The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or
other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by
SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of
others.

e (logo)®
IBM ®
AIX®
CICS/ESA®
CICS®
iSeries™
MVS™
OS/2®
OS/390®
RACF®

Redbooks
Redbooks Logo
S/390®
SP™
TXSeries™
VisualAge®
WebSphere®
z/OS™
zSeries™
viii Java Connectors for CICS

Preface

What is the best method for connecting a Java application to CICS? There are a
wealth of options that are available, ranging from using the Java class libraries
that are shipped with the CICS Transaction Gateway (CTG), to using the
Common Client Interface (CCI) component of the Java 2 Enterprise Edition
(J2EE) Connector Architecture. There are also important application
development choices to make, such as whether to code to an API directly, or to
use a tool such as VisualAge for Java’s Enterprise Access Builder.

This IBM Redbook examines the strategic Java connection methods for CICS.
The focus is on the use of the J2EE Connector Architecture, which is a new Java
standard for connecting to legacy Enterprise Information Systems such as CICS.
This builds upon the previous IBM Common Connector Framework (CCF) and
provides enhanced facilities for deploying into a managed environment, where
connection pooling, transactions, and security are managed by a J2EE capable
application server such as WebSphere Application Server.

This redbook begins by providing an overview of the CTG, which is the basis for
the new CICS J2EE resource adapters provided in V4.0.1 of the CTG.
Afterwards, a set of practical programming examples are provided that detail how
to build applications using either the existing Java classes offered by the CTG, or
using the new J2EE CCI.

Included in this redbook are comprehensive examples of how to develop
applications using both the External Call Interface (ECI) for calling COMMAREA
based CICS programs, and the External Presentation Interface (EPI) for invoking
3270 based CICS transactions. The usage of the ECIRequest, ESIRequest, EPI
support classes provided by the CTG is featured, as well as the CCI, which is
required when developing to the J2EE Connector Architecture specification.

Additionally, there is information on how to develop and deploy a full-scale J2EE
application using the CCI, which is deployed into the managed environment
offered by WebSphere Application Server Advanced Edition V4, using the CICS
ECI J2EE resource adapter and the CTG V4.0.1.

All the code developed in the book is packaged into a set of simple samples and
is available for download from the ITSO Web sites.
© Copyright IBM Corp. 2002 ix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Phil Wakelin is a senior IT specialist at the International Technical Support
Organization, San Jose Center. Phil joined IBM in 1990, originally working in the
System Test Department at IBM Hursley, on many of the platforms and versions
of CICS before joining the Installation Support Center as a pre-sales support
specialist for CICS client-server. Phil has been at the ITSO since 1999 and writes
and speaks extensively on CICS Web-enablement. He is an IBM Certified
Solutions Expert in CICS Web Enablement, and holds a BS degree in Applied
Biology from the University of Bath, UK.

Martin Keen is an advisory IT specialist, working as a consultant in Software
Group Services at IBM UK’s Hursley Laboratory. He writes and teaches
extensively in the area of CICS Java Web-enablement, and also provides
consultancy for WebSphere Application Server for z/OS. Martin is an IBM
Certified Solutions Expert in CICS Web Enablement, and holds a BS in
Computer Studies from Southampton Institute.

Richard Johnson is a CICS technical consultant, working in Software Group
Services at IBM UK’s Hursley Laboratory. His areas of expertise include the
CICS Transaction Gateway, Web, Java, EJB, CICS and WebSphere Application
Server. He has two years of previous experience at the Functional Test
Department of CICS development. He holds a Master’s in Chemistry from the
University of Oxford.

Daniel Cerecedo Diaz is an IT specialist working in IBM Global Services in
Madrid. He has two years of experience in Java and Web development, object-
oriented design and development methodologies. He holds a Master’s degree in
Computer Science from Deusto University. His areas of expertise include Java,
XML and related technologies, and WebSphere Business Components
Composer.
x Java Connectors for CICS

Thanks to the following people for their contributions to this project:

Chris Smith, Geoff Sharman and Ken Davies, IBM Hursley for supporting this
project.

Dave Kelsey, Peter Masters, Jonathan Lawrence, David Radley, Stephen Hurst,
Daniel McGinnes, Kate Robinson IBM Hursley, for being a valuable source of
reference regarding the CICS Transaction Gateway.

Kevin Sutter and Kevin Kelle IBM Rochester, for great advice on WebSphere.

Mike Andrea and John Green IBM Toronto for advice on VisualAge for Java and
associated products.

Carol Shanesy, IBM Dallas for help with CICS 3270 questions, and Dennis
Weiand for providing such detailed reviews.

Maritza Dubec of the International Technical Support Organization, for providing
editing support.

Notice
This publication is intended to help application developers to design and develop
Java applications to access legacy CICS applications. Information in this
publication is not intended as the specification of any programming interfaces
that are provided by CICS Transaction Server, the CICS Transaction Gateway, or
VisualAge for Java. See the PUBLICATIONS section of the IBM Programming
Announcement for these products for more information about what publications
are considered to be product documentation.

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
 Preface xi

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xii Java Connectors for CICS

Part 1 Introduction

In part one, we provide an overview of the Java connectors available for use with
CICS, including a detailed description of the CICS Transaction Gateway, and its
features and functions. We also provide a summary of the J2EE Connector
Architecture and the Common Client Interface.

Part 1
© Copyright IBM Corp. 2002 1

2 Java Connectors for CICS

Chapter 1. Java connectors for CICS

This chapter gives a broad overview of the Java connectors that are available for
use with CICS.

This chapter provides details on the following information:

� CTG base classes
� CTG EPI beans
� CCF CICS connector
� CICS connector for CICS TS
� J2EE connectors, including:

– J2EE CICS resource adapters
– WebSphere for z/OS CICSEXCI connector

1

© Copyright IBM Corp. 2002 3

1.1 CICS Transaction Gateway
The CICS Transaction Gateway (CTG) has a long heritage as a Java connector
for CICS, originally being provided as the CICS Gateway for Java, which was
available as a free download for use with the CICS Client. Since then the CTG
has advanced along with the Java world and now provides three principal
interfaces for communication with CICS:

� Base classes
� Common Connector Framework API
� J2EE Common Client Interface

These interfaces, and the other connectors that have also implemented these
interfaces, are discussed in the following sections.

For further detail on the features and facilities provided by the CTG, refer to
Chapter 2, “CICS Transaction Gateway” on page 9.

1.2 CTG APIs
The CTG provides its own set of base classes, as well as a set of EPI support
classes and EPI beans.

CTG base classes
The CTG provides a set of base classes that offer a simple, but low-level
interface to CICS. They are relatively easy to use, but they require a reasonable
understanding of CICS to implement. There are three request classes that are
part of the CTG base classes:

ECIRequest This provides a Java interface to the ECI, and it is used for
calling COMMAREA based CICS applications. For details on
how to use the ECIRequest class to develop test applications,
refer to Chapter 4, “ECI and ESI applications” on page 35.

EPIRequest This provides a Java interface to the EPI, and it is used for
invoking 3270 based transactions. Due to its low-level
nature, using it for developing EPI applications requires a
strong knowledge of CICS and 3270 datastreams. For this
reason, there are no examples in this book, and it is advised
that you use the EPI support classes instead.
4 Java Connectors for CICS

ESIRequest This provides a Java interface to the ESI that invokes the
Password Expiration Management (PEM) functions in CICS.
This allows for the verification and changing of passwords.
For details on how to use the ESIRequest class to develop
test applications, refer to Chapter 4, “ECI and ESI
applications” on page 35.

EPI support classes
The EPI support classes provide high-level constructs for handling 3270 data
streams. You do not need a detailed knowledge of 3270 data streams to use
these classes, and they are considerably easier to use than the EPIRequest
class.

A wide range of classes is provided including AID, FieldData, Screen,
Terminal, Map and MapData. These are used to represent the interface to a CICS
3270 terminal, and the resulting 3270 response. For details on how we used
these support classes to develop test applications, refer to Chapter 7, “EPI
support classes” on page 155.

EPI beans
The EPI beans are based on the EPI support classes and JavaBean
development environment. They allow you to create EPI applications in a visual
development environment, using one of the visual application builder tools, such
as VisualAge for Java.

For further information on using the EPI beans refer to the IBM Redbook, CICS
Transaction Gateway and More CICS Clients Unmasked, SG24-5277.

Restriction: Note that the CCF and J2EE connectors do not provide an
alternative interface to the ESIRequest class (as they do for the EPI and ECI
interfaces.)
 Chapter 1. Java connectors for CICS 5

1.3 CICS CCF connector
The IBM Common Connector Framework (CCF) is an architecture that provides
Java developers with a standardized set of interfaces to access Enterprise
Information Systems (EIS). The CCF connector classes implement the CCF
interfaces and programming model. The CCF is comprised of three core
components:

� CCF classes
The principal component are the CICSConnectionSpec, the
ECIInteractionSpec, and the EPIInteractionSpec, which are used to control
the interaction with the CICS EIS.

� Java Record Framework
The Java Record Framework is used to build Record objects to wrap data
structures such as a COBOL COMMAREA or a BMS map. It also provides
a powerful set of marshalling options for the encoding of data, and for
retrieving fields from the COMMAREA or BMS datastreams.

� Enterprise Access Builder (EAB)
The EAB is a function of VisualAge for Java. Through a set of SmartGuides,
the EAB allows Command beans to be developed that encapsulate the CCF
classes, and the Java Record Framework Records.

The CICS Transaction Gateway provides the CICSConnectionSpec,
ECIInteractionSpec, and EPIInteractionSpec classes that implement the CCF
connector for CICS. These classes are provided in the CTG class library
ctgclient.jar, and are also provided by VisualAge for Java, and by CICS
Transaction Server for z/OS V2 (CICS TS V2). For further information on the
CCF, refer to the redbook CCF Connectors and Databases Connections using
WebSphere Advanced Edition, SG24-5514.

The J2EE Connector Architecture has now replaced the CCF as the strategic
way of connecting to EIS. If you are developing new applications that connect to
EIS, it is strongly recommend that you use the J2EE Connector Architecture
instead of the CCF.

1.4 CICS Connector for CICS TS
In CICS TS V2.1 and V2.2, a Java program, or an enterprise bean running within
CICS, can use the new CICS Connector for CICS TS to link to any CICS program
with a COMMAREA interface. This connector runs within the CICS region and
offers the same CCF connector interface as provided by the CTG. However,
when using the CICS Connector for CICS TS, the CTG is not required, because
the connector runs within the CICS TS V2 environment.
6 Java Connectors for CICS

Since the CICS connector for CICS TS is based on the technology in the CTG
class library ctgclient.jar, it is also possible to develop and deploy Java
applications into CICS TS V2 that use the CTG JavaGateway and ECIRequest
objects, instead of using the CCF CICSConnectionSpec and ECIInteractionSpec
objects.

1.5 J2EE connectors
The J2EE Connector Architecture defines a standard architecture for connecting
the Java 2 Platform Enterprise Edition (J2EE) platform to a heterogeneous EIS
such as CICS. Java applications interact with resource adapters using the
Common Client Interface (CCI) (which is largely based on the CCF) but, it is a
standard that is open to the entire Java community. For further details on the
J2EE connector architecture, refer to Chapter 3, “CICS and the J2EE Connector
Architecture” on page 17.

The connector architecture enables an EIS vendor to provide a standard
resource adapter for its EIS. A resource adapter is the middle-tier between a Java
application and an EIS, which permits the Java application to connect to the EIS.

There are three resource adapters currently available for use with CICS:

� CICS ECI resource adapter and EPI resource adapter

The CTG V4.0.1 offers an ECI and EPI resource adapter. Together they
provide the ability to call both COMMAREA based CICS programs and start
3270 based CICS transaction from a J2EE environment. They can be used in
any Java application as a non-managed environment, or from a session bean
in a managed environment, such as in WebSphere Application Server
Advanced Edition V4.

Note: As an alternative to the CICS connector for CICS TS, you can use the
link() method provided in the JCICS ibm.cics.server.Program class. This is
a lower-level interface, and if used in a session bean, it will prevent the session
bean from being deployed in an environment other than CICS.

For more information on the CICS connector for CICS TS, refer to the IBM
Redbook, Enterprise JavaBeans for z/OS and OS/390 CICS Transaction
Server V2.1, SG24-6284.
 Chapter 1. Java connectors for CICS 7

These two resource adapters, along with WebSphere Application Server
Advanced Edition, are the main subjects of this redbook. Further details on
how to develop ECI based applications are provided in Part 2, “Connecting to
COMMAREA based CICS programs” on page 33, and how to develop EPI
based applications in Part 3, “Connecting to 3270 based CICS transactions”
on page 153.

These connectors are based on the ECI and EPI Java interfaces, previously
provided by the CTG. Since the ECI is a one phase commit protocol calls
using the ECI resource adapter can only be transactional if the Application
Server supports the Local Transaction interface. For further details refer to
3.3.2, “Transaction management” on page 25.

� WebSphere for z/OS CICSEXCI connector

This connector comes with WebSphere for z/OS V4.0.1, and allows
enterprise beans running in a WebSphere for z/OS J2EE server region to
make calls to COMMAREA based CICS programs. This connector uses the
EXCI to establish connection to a CICS AOR (which must reside on the same
MVS image as the WebSphere for z/OS J2EE server.) The calls to CICS
programs are transactional. Updates to recoverable resources will be
coordinated using MVS Resource Recovery Services (RRS).

Attention: Support for the CICS ECI resource adapter running in
WebSphere V4 for z/OS is currently not available with the CTG, but will be
made available in V4.0.2 of the CTG. Since this connector will use the
CICS External Call Interface (EXCI) to establish a connection to a CICS
AOR, the calls to a CICS program can be transactional, as long as the
AOR resides on the same MVS image as the CTG and WebSphere.
Updates to recoverable resources will be will be coordinated using MVS
Resource Recovery Services (RRS)

Note: The WebSphere for z/OS CICSEXCI connector is a beta J2EE
connector, and its function will be superseded by the CICS ECI resource
adapter when it is made available.
8 Java Connectors for CICS

Chapter 2. CICS Transaction Gateway

This chapter gives a broad overview of the CICS Transaction Gateway (CTG)
and the features and functions it provides.

The following topics are discussed:

� CTG interfaces
� Gateway daemon
� Client daemon
� Configuration tool
� Terminal Servlet

2

© Copyright IBM Corp. 2002 9

2.1 CTG: interfaces
All the principal interfaces provided by the CTG fall into one of three categories,
based on the function being invoked in CICS:

� External Call Interface (ECI)
� External Presentation Interface (EPI)
� External Security Interface (ESI)

External Call Interface
The ECI is used for calling COMMAREA based CICS applications. The
COMMAREA is the buffer that is used for passing the data between the client
and the CICS server. CICS sees the client request as just another distributed
program link (DPL) request.

Figure 2-1 External Call Interface

For further details on programming with the ECI refer to Chapter 4, “ECI and ESI
applications” on page 35.

CICS
Application

CICS region

C
O
M
M
A
R
E
A

ECI

CICS Transaction
Gateway

LINK
10 Java Connectors for CICS

External Presentation Interface
The EPI is used for invoking 3270 based transactions. A terminal is installed in
CICS, and CICS sees the request as running on a remote terminals controlled by
the CTG. For further details on programming with the EPI refer to Chapter 7, “EPI
support classes” on page 155.

Figure 2-2 External Presentation Interface

External Security Interface
The ESI is used for verifying and changing of the user ID and password
information held in the CICS External Security Manager (ESM), such as RACF. It
is based on the CICS Password Expiration Management (PEM) function. For
further details on programming with the ESI refer to 4.4, “ESI calls” on page 53.

Figure 2-3 External Security Interface

3270

presentation
logic CICS

Application

CICS region

EPI

CICS
Transaction

Gateway

EPI

RACF

CICS region

ESI

EXEC CICS VERIFY
PASSWORD

CICS Transaction
Gateway

EXEC CICS CHANGE
PASSWORD

or
P
E
M

 Chapter 2. CICS Transaction Gateway 11

2.2 CTG: infrastructure
The CICS Transaction Gateway (CTG) is a set of client and server software
components that allow a Java application to invoke services in a CICS region.
The Java application can be an applet, a servlet, an enterprise bean, or any other
Java application (Figure 2-4).

The latest edition of the CTG is V4.01, and the currently supported platforms are
OS/390, Linux for S/390, AIX, HP-UX, Sun Solaris, Windows NT, and Windows
2000.

The CTG is supported for use with CICS/ESA V4.1, CICS/VSE 2.3 and CICS
Transaction Server for VSE/ESA V1, but only if the CTG runs on a distributed
platform. For use with CICS Transaction Server for OS/390 or CICS Transaction
Server for z/OS V2, the CTG can run on OS/390 or a distributed platform.

For product information on using CTG, refer to the CICS Transaction Gateway
Administration Guides. For information on configuring the CTG, refer to CICS
Transaction Gateway V3.1, The WebSphere Connector for CICS, SG24-6133.

Figure 2-4 CICS Transaction Gateway components

The CICS Transaction Gateway consists of the following principal components:

� Gateway daemon
� Client daemon
� Configuration tool (ctgcfg)
� Terminal servlet
� Java class library

ECI EPI

Transport drivers

Client daemon

ESI

Configuration
tool

CICS
server

Java client
application

CICS Transaction
Gateway

ctgcfg
Gateway
daemon

HTTP
or

TCP

JNI

Network

CTG.INI
12 Java Connectors for CICS

2.2.1 Gateway daemon
The gateway daemon is a long-running process that functions as a server to
network-attached Java client applications (such as applets or remote
applications) by listening on a specified TCP/IP port. The CTG supports four
different CTG network protocols (TCP, SSL, HTTP, or HTTPS); each of which
requires a different CTG protocol handler to be configured to listen for requests
(Figure 2-5).

Figure 2-5 CICS Transaction Gateway: distributed platform

The structure of the gateway daemon is slightly different on OS/390 and on
distributed platforms. On distributed platforms (including Linux for S/390), the
CTG provides equivalent functions to that provided by the CICS Universal Client.
There are three basic interfaces that are provided to Java client applications:

External Call Interface (ECI) A call interface to COMMAREA based
CICS applications

External Presentation Interface (EPI) An API to invoke 3270 based
transactions

External Security Interface (ESI) Allows password expiration
management (PEM) functions to be
invoked in CICS, in order to verify and
change user IDs and passwords

CTG

Client
daemon

Java
Client

Gateway
daemon

CICS
Server

Protocol
handler

APPC
or

TCP62

TCP or SSL
HTTP or HTTPS

OS/390 or VSE

Distributed platform

CTGJNI.dll

JNI module
 Chapter 2. CICS Transaction Gateway 13

On OS/390, the External CICS Interface (EXCI) is used in place of the client
daemon, and provides access to COMMAREA based CICS programs.
Consequently, the EPI and ESI interfaces are not available with the OS/390 CTG.
There are a few differences between the OS/390 ECI support, and the ECI
support using distributed platforms (see Figure 2-6.)

Figure 2-6 CICS Transaction Gateway: OS/390

The primary differences in the ECI support offered when the CTG is
running on OS/390, are as follows:

� When using asynchronous calls, specific reply solicitation calls are not
supported.

� The user ID and password flowed on ECI requests are verified within the CTG
with RACF; afterwards the verified user ID is then flown onto CICS.

� The ECI_Listsytems function does not return the list of defined servers, since
any CICS region within the OS/390 Parallel Sysplex can be reached.

 Note: The gateway daemon is not usually required when a Java
application executes on the same machine as where the CTG is installed.
In this situation, the CTG local: protocol can be used, which directly
invokes the underlying transport mechanism using native code.

CTG

EXCI

Java
Client

Gateway
daemon

CICS
Server

Protocol
handler

MRO

TCP or SSL
HTTP or HTTPS

OS/390

CTGJNI.dll

JNI module
14 Java Connectors for CICS

2.2.2 Client daemon
The CTG client daemon is an integral part of the CTG on all distributed platforms.
It provides the CICS client-server connectivity using the same technology as
previously provided by the CICS Universal Client. On distributed platforms,
connections to the following CICS servers are supported

� APPC connections from Windows and AIX platforms to all CICS platforms

� TCP62 (LU6.2 over IP) connections to CICS/ESA V4.1, CICS TS V1.2 and
CICS TS V1.3 for OS/390, and CICS TS for z/OS V2

� TCP/IP connections to the TXSeries CICS Servers (AIX, Sun Solaris,
Windows NT, and HP-UX), CICS TS for z/OS V2.2 and CICS TS for VSE/ESA
V1.1.1 and CICS OS/2 Transaction Server

For further details on supported platforms and required service levels, refer to the
appropriate announcement letters available at the following URL:

http://www-4.ibm.com/software/ts/cics/announce/

2.2.3 Configuration tool
The configuration tool (ctgcfg) is a Java-based graphical user interface (GUI)
supplied by the CTG on all platforms. It is used to configure the gateway daemon
and client daemon properties, which are stored in the CTG.INI file. In previous
versions of the CTG, the cicscli.ini and gateway.properties files were used to store
the configuration parameters now stored in CTG.INI. Figure 2-7 illustrates the
graphical user interface of the configuration tool.

Figure 2-7 CTG configuration tool
 Chapter 2. CICS Transaction Gateway 15

http://www-4.ibm.com/software/ts/cics/announce/

2.2.4 Terminal Servlet
The Terminal Servlet is a supplied Java servlet that allows you to use a Web
browser as an emulator for a 3270 CICS application. It dynamically converts
3270 output into HTML for display on a Web browser, and is a non-programmatic
solution for Web-enabling 3270 applications.

The Terminal Servlet is similar in function to the CICS supplied 3270 Web bridge,
in that it provides a turn-key solution to Web-enabling 3270 based applications. It
also has the ability to use the same HTML templates as the 3270 Web bridge to
display the output of CICS BMS maps as HTML forms. In addition, it provides a
basic terminal emulation capability, and the ability to use server-side includes to
display information from a CICS screen. The HTML template interface offered by
the Terminal Servlet is shown in Figure 2-8.

Figure 2-8 CTG Terminal Servlet
16 Java Connectors for CICS

Chapter 3. CICS and the J2EE
Connector Architecture

This chapter describes the J2EE Connector Architecture and how it can be used
to access CICS applications. It introduces the J2EE Connector Architecture, and
explores some of its components. This chapter closes with a discussion of the
CICS specific resource adapters that are provided with the CICS Transaction
Gateway.

This chapter covers the following subjects:

� J2EE Connector Architecture, including an introduction to this specification

� Common Client Interface, describing the client API for working with the J2EE
Connector Architecture

� System contracts that can automate tasks, such as transactionality and
security

� CICS resource adapters provided by the CICS Transaction Gateway

3

© Copyright IBM Corp. 2002 17

3.1 J2EE Connector Architecture
The J2EE Connector Architecture defines a standard architecture for connecting
the Java 2 Platform Enterprise Edition (J2EE) platform to heterogeneous
Enterprise Information Systems (EIS). Examples of EIS include transaction
processing systems, such as CICS Transaction Server, and Enterprise Resource
Planning systems such as SAP.

The connector architecture enables an EIS vendor to provide a standard
resource adapter for its EIS. A resource adapter is a middle-tier between a Java
application and an EIS, and permits the Java application to connect to the EIS.
The types of Java applications include applets, servlets, and enterprise beans. A
resource adapter plugs in to any application server supporting the J2EE
Connector Architecture.

An application server vendor only needs to extend its system once to support the
J2EE Connector Architecture, and is then assured of connectivity to multiple
EISs. Likewise, an EIS vendor provides a standard resource adapter, and it has
the capability to plug-in to any application server that supports the J2EE
Connector Architecture. This is shown in Figure 3-1.

Figure 3-1 The role of resource adapters

Note: The complete J2EE Connector Architecture specification defined by the
Java Community Process can be downloaded at:

http://java.sun.com/j2ee/download.html#connectorspec

Application Servers

EISs Application
Servers

EISs
18 Java Connectors for CICS

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec

3.1.1 Components of the J2EE Connector Architecture
Version 1.0 of the J2EE Connector Architecture defines a number of components
that make up this architecture (see Figure 3-2):

� Common Client Interface (CCI)

The CCI defines a common API for interacting with resource adapters. It is
independent of a specific EIS. A Java developer communicates to the
resource adapter using this API. See 3.2.1, “CCI overview” on page 22.

� System contracts

A set of system-level contracts between an application server and EIS. These
extend the application server to provide:

– Connection management
– Transaction management
– Security management

These system contracts are transparent to the application developer,
meaning, they do not implement these services themselves.

� Resource adapter deployment and packaging

A resource adapter provider develops a set of Java interfaces/classes as part
of its implementation of a resource adapter. The Java interfaces/classes are
packaged together with a deployment descriptor to create a Resource
Adapter Archive (represented by a file with an extension of rar). This
Resource Adapter Module is used to deploy the resource adapter into the
application server.

Figure 3-2 J2EE Connector Architecture components

Connection
Pooling

J2EE
Application Server

System level
contracts

Transaction
Manager

Security
Manager

Transaction
 Management

Connection
 Management

Security
 Management

Application
Component

Resource
Adapter

Enterprise
Information

System

EIS-specific
interface

Common
Client
Interface

Container-Component
Contract
 Chapter 3. CICS and the J2EE Connector Architecture 19

3.1.2 Managed and non-managed environments
There are two different types of environments that a Java application using J2EE
connectors can run in:

� Managed environment

The Java application accesses a resource adapter through an application
server such as WebSphere Application Server. Management of connections,
transactions, and security is provided by this application server. The Java
application developer does not have to code this management manually.

� Non-managed environment

In a non-managed environment you do not have to use an application server.
Instead, the Java application directly uses the resource adapter to access an
EIS. In this case management of connections, transactions, and security must
be handled manually by the Java application.

Typically, when using a resource adapter for the first time, it is advisable to
develop a Java application for a non-managed environment first. This allows you
to become familiar with the resource adapter without having to deploy your Java
application to an application server. Once you are sure that the Java application
is working correctly, you can modify it to use a managed environment, and deploy
it to an application server. (See Chapter 5, “CCI applications: ECI based” on
page 71, and Chapter 6, “CCI applications in a managed environment” on
page 111).

3.1.3 The Common Connector Framework
Before the existence of the J2EE Connector Architecture, IBM recognized a
need for a common way to connect to EIS. The IBM Common Connector
Framework (CCF) was introduced to provide this function.

Before the CCF, a Java application developer wishing to connect to multiple EISs
would have to learn an API specific to each EIS connector. Now, the CCF offers a
common API for every EIS connector supported within this framework.
Additionally, tools such as VisualAge for Java Enterprise Edition can generate
code adhering to the CCF specification, allowing Java developers to create
connections to an EIS without having to write a single line of code.

However, the CCF has a limitation; it is not an open standard. The only
connectors supported by the CCF are those IBM chooses to add. The J2EE
Connector Architecture provides similar function to the CCF, but is an open
specification that can be implemented by anyone.
20 Java Connectors for CICS

IBM played a significant role in the development of the J2EE Connector
Architecture specification, and it is based heavily on the CCF. A developer
already familiar with the CCF will be able to become productive quickly using
J2EE resource adapters.

The J2EE Connector Architecture has now replaced the CCF as the strategic
way of connecting to an EIS. If you are developing new applications that connect
to EISs, we strongly recommend using the J2EE Connector Architecture instead
of the CCF.

VisualAge for Java Enterprise Edition V4 provides tooling that can migrate
existing CCF based applications to the J2EE Connector Architecture standard.
Additionally, the same tooling that generated CCF code automatically can be
used to generate code adhering to the J2EE Connector Architecture in VisualAge
for Java V4.

3.2 Common Client Interface
The Common Client Interface (CCI) defines a standard client API so that
application components can access multiple resource adapters (Figure 3-3). This
API can be used directly, or enterprise application integration frameworks can be
used to generate EIS access code for the developer. The CCI is designed to be
an EIS independent API, so that an enterprise application development tool can
produce code for any J2EE compliant resource adapter that implements the CCI
interface. Such tools include the VisualAge for Java Enterprise Access Builder.

Figure 3-3 CCI with multiple resource adapters

CCI

Java
Application

Resource
Adapter 1

EIS2

EIS3

Resource
Adapter 2

Resource
Adapter 3

EIS1
 Chapter 3. CICS and the J2EE Connector Architecture 21

3.2.1 CCI overview
The CCI has the following characteristics:

� It is independent of a specific EIS. It forms a base-level API for EIS access on
which higher-level functionality, specific to an EIS, can be built.

� It provides an API that is consistent with other APIs in the J2EE platform,
such as JDBC.

� It is targeted primarily towards application development tools and enterprise
application integration frameworks, rather than Java developers using the
CCI API directly.

One goal of the CCI is to complement, rather than replace, the JDBC API. The
CCI programming model matches up with the JDBC programming model, but
both APIs serve the following different purposes:

� The JDBC API is used to access relational databases.
� The CCI API is used to access an EIS (which are not databases).

3.2.2 Using the CCI classes
The CCI provides two distinctive types of classes:

� Framework classes
� Input and output classes

Framework classes
These are used to define the communication with the resource adapter. The
Framework classes enable you to:

� Connect to a resource adapter and disconnect
� Specify the interaction to make to an EIS
� Execute the interaction to an EIS; passing input and retrieving output

Figure 3-4 is an example of simple code that shows how to interact with an EIS
using the CCI API.

Figure 3-4 A basic CCI sample

1 ConnectionFactory cf = <lookup from JNDI namespace>
Connection connection = cf.getConnection();

2 Interaction interaction = connection.createInteraction();
3 interaction.execute(<input and output data>);
4 interaction.close();

connection.close();
22 Java Connectors for CICS

The following steps summarizes the logic of the code in Figure 3-4:

1. Create a Connection object to connect to the EIS

The ConnectionFactory object is used to generate a Connection object. The
ConnectionFactory retrieves information on how to connect to the EIS by
performing a JNDI lookup. This information might include the location of the
resource adapter to use, and the name of the EIS to connect to.

2. Create an Interaction object

An Interaction object is used to perform specific interactions with an EIS
across a connection. The Connection object is used to create an
Interaction.

3. Execute the Interaction with the EIS

The Interaction object is used to execute the interaction with the EIS. This
will make a call to the resource adapter over the specified connection, which
will in turn, make a call to the EIS.

4. Close the Interaction and Connection

Input and output classes
Input and output classes are used to pass or retrieve specific information to both
the framework classes, and to the EIS. There are three types of input and output
classes:

� ConnectionSpec objects

Actions that a resource adapter will perform on a connection to a EIS. For
example, the user ID and password to flow on a connection.

� InteractionSpec objects

Actions that a resource adapter will perform on an interaction with a EIS. For
example, the program name to run in the EIS.

� Record objects

Stores the input and output data to be used during the interaction with a EIS.
The input Record will contain data to pass to the EIS, and the output Record
will be used to store data generated by the EIS.

A resource adapter will implement the spec objects to create getter and setter
methods that have specific relevance to an EIS.

Note: The interfaces used in the example in Figure 3-4 all belong to the
javax.resource.cci package.
 Chapter 3. CICS and the J2EE Connector Architecture 23

Figure 3-5 shows a more complete overview of using CCI, with input and output
classes included for a fictional xyz resource adapter.

Figure 3-5 A CCI sample with input and output classes

For information about using CCI with the CICS ECI resource adapter, refer to
Chapter 5, “CCI applications: ECI based” on page 71. For information about
using the CCI with the CICS EPI resource adapter, see Chapter 8, “CCI
applications: EPI based” on page 181.

3.3 System contracts
To achieve the ease of interaction between the application server and EIS, the
J2EE Connector Architecture defines a set of system contracts. The application
server uses a resource adapter to support these contracts. The resource adapter
implements the system contracts to collaborate with the application server and
uses an EIS-specific API to communicate with the EIS. Thus, a resource adapter
is specific to an EIS, however, because it implements the system contracts, it can
be plugged into any J2EE compliant application server.

3.3.1 Connection management
The connection management contract gives an application component a
connection to an EIS. To deliver performance and scalability, the connection
management contract should support connection pooling and management.

ConnectionFactory cf = <lookup from JNDI namespace>
xyzConnectionSpec cs = new xyzConnectionSpec();
cs.setXXX();
Connection connection = cf.getConnection();
Interaction interaction = connection.createConnection();
xyzInteractionSpec is = new xyzInteractionSpec();
is.setXXX();
RecordImpl in = new RecordImpl();
RecordImpl out = new RecordImpl();

interaction.execute(is, in, out);
interaction.close();
connection.close();
24 Java Connectors for CICS

When retrieving data from an EIS, a large portion of the time (from making the
connection, to receiving the data, and closing the connection) is in the creation of
the connection itself. Connection pooling alleviates this bottleneck. When you call
for a connection, you are passed a handle to the next available connection that is
in a ready-to-use state. This increases performance greatly by removing the
actual connection time, and scalability is handled by predefining as many
connections in the pool as you need.

Connection pooling is a quality of service offered by the application server. An
application server uses the connection management contract to implement a
connection pooling mechanism in its own implementation-specific way.

3.3.2 Transaction management
Before discussing transaction management, the following terms should be
defined:

Resource manager The resource adapter and underlying EIS. It may
participate in transactions that are externally
controlled by a transaction manager.

Transaction manager Controls and coordinates transactions across
multiple resource managers

A resource manager has three options for supporting transactions:

� No support

The resource manager does not support transactions.

� Local transactions

These are transactions that are managed internally by the resource manager.
The coordination of such transactions involves no external transaction
manager.

� Global transactions

There are multiple resources managers involved, and an external transaction
manager must be used to coordinate the transaction using two-phase
commit.

Local transactions
These transactions are managed internally by the resource manager without the
need for an external transaction manager, and can be utilized when only one
resource manager is involved. Local transactions only support one-phase
commit, because they only reference one EIS.
 Chapter 3. CICS and the J2EE Connector Architecture 25

To support local transactions, the resource adapter must implement the
javax.resource.spi.LocalTransaction interface. If the resource adapter
supports the CCI, then it will also send a number of transaction events to the
application server.

The application server is also required to implement the interface
javax.resource.spi.ConnectionEventListener, which among other events,
allows the application server to hear and react to the following local transaction
events:

� LOCAL_TRANSACTION_STARTED
� LOCAL_TRANSACTION_COMMITTED
� LOCAL_TRANSACTION_ROLLEDBACK

By listening for these events, the application server can do various functions such
as local transaction cleanup.

Global transactions
Global transactions are also referred to in the J2EE Connector Architecture
specification as JTA transactions, and they are supported by the resource
adapter implementing the javax.transaction.xa.XAResource interface.

In a managed environment, the application server uses a transaction manager to
coordinate the transaction. The application server will provide the following
functions:

� Inform the transaction manager when a transaction begins.
� Perform the work of the transaction.
� Tell the transaction manager to commit the transaction.

The transaction manager uses the XAResource interface of the resource adapters
to coordinate the two-phase commit process across multiple resource managers.
Two-phase commit works as follows: (See Figure 3-6.)

1. In phase one, the transaction manager asks all resource managers to prepare
to commit their work. If a resource manager can commit its work, it replies
affirmatively, and hardens its recoverable data to permanent storage. A
negative reply reports an inability to commit for any reason.

2. In phase two, the transaction manager directs all resource managers either to
commit or rollback work done on behalf of the global transaction, based on
the replies from phase one.
26 Java Connectors for CICS

In a non-managed environment, the Java application is responsible for managing
transactions, through the local transaction interface (providing that the resource
adapter supports this). By using the managed environment, the programmer
does not even need to think about managing the transaction, because the
transaction manager is one of the quality of services provided.

Figure 3-6 Global transactions

If the resource adapter does implement XAResource (and does support global
transactions) it must also implement support for one-phase commit. This allows
the transaction manager to do one-phase commit optimization.

Local transaction optimization
Local transaction optimization is forcing the use of one-phase commit in the
situation when two-phase commit is not needed for a global transaction. This is
when only one resource manager was referenced, so two-phase commit is an
unnecessary overhead.

When the application server needs to do a global transaction, it informs the
transaction manager of its intention to begin a transaction. The application server
then performs the necessary operations, and when finished, informs the
transaction manager to commit the transaction. The transaction manager now
has the ability to do one-phase optimization. If the EIS referenced is only one, the
transaction manager skips the prepare statement, and goes straight to commit or
rollback. WebSphere Application Server Advanced Edition V4 does not currently
provide this support.

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

Commit

Commit

Transaction
Manager

Global
Transaction

Commit

Prepare

Stage 1 - Prepare to Commit

Prepare

Commit

Transaction
Manager

Resource
Manager

Resource
Manager
 Chapter 3. CICS and the J2EE Connector Architecture 27

Last resource optimization
It is possible for a resource adapter that does not implement the XAResource
interface to participate in a global transaction using last resource optimization
(also known as last-agent optimization). This allows the use of a single
one-phase commit resource in a global transaction, along with any number of
two-phase commit resources. At transaction commit, the two-phase commit
resources will first be prepared. If this is successful, the one-phase commit
resource will be called to commit, followed by the call to commit for two-phase
commit resources. This is shown in Figure 3-7.

Figure 3-7 Last resource optimization

Last resource optimization falls out of the scope of the J2EE Connection
Architecture specification. It is up to each application server to decide if it is
supported. Currently, WebSphere Application Server Advanced Edition V4 does
not provide this support.

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

 C
ommit

 Commit

Global
Transaction

 C
ommit

 Prepare

Stage 1 - Prepare to Commit

 Prep
are

 Commit

Transaction
Manager

Resource
Manager

Resource
Manager

One Phase
Commit

Resource
Manager

One Phase
Commit

Resource
Manager

 Com
m

it

Transaction
Manager
28 Java Connectors for CICS

3.3.3 Security management
The J2EE Connector Architecture security contract extends the J2EE security
model to provide secure connections to EIS. To create a connection to an EIS,
there must be some form of signing on to the EIS, to authenticate the connection
requester. Re-authentication can also take place if supported by the EIS. This
occurs when the security context is changed after a connection is made. (For
example, connection pooling could cause a re-authentication when the
connection is redistributed.)

Performing the signon generally involves one or more of the following steps:

1. Determine the resource principal under whose security context the
connection will be made.

2. Authenticate the resource principal.

3. Establish secure communications.

4. Determine authorization (access control).

3.4 CICS resource adapters
The CICS Transaction Gateway provides two CICS resource adapters:

� ECI resource adapter

For making calls to CICS COMMAREA-based programs

� EPI resource adapter

For making calls to CICS 3270-based transactions

The CICS Transaction Gateway provides implementations of the CCI interfaces
for these two resource adapters in the com.ibm.connector2.cics package.
These are CICS specific implementations of CCI interfaces. For instance, the
javax.resource.cci.ConnectionSpec interface has been implemented by the
com.ibm.connector2.cics.ECIConnectionSpec class. This contains methods
relating specifically to the CICS resource adapters, such as
setCommareaLength() and setFunctionName().

For more information on the CICS Transaction Gateway, refer to Chapter 1, “Java
connectors for CICS” on page 3.

3.4.1 ECI resource adapter
The CICS ECI resource adapter uses the External Call Interface (ECI) of the
CICS Transaction Gateway to communicate with CICS. It can link to CICS
programs, passing data in a buffer called a COMMAREA.
 Chapter 3. CICS and the J2EE Connector Architecture 29

Transaction management support
The CICS ECI resource adapter implements the LocalTransaction interface, and
supports local transactions. Global transactions are not supported. If you use an
application server than supports last resource optimization, the resource adapter
can participate in a global transaction, provided that it is the only local transaction
resource in the global transaction. WebSphere Application Server Advanced
Edition V4 does not currently support last resource optimization.

Security management support
To communicate with a secure CICS region using the ECI, you must send a valid
user ID and password. These can be supplied by the application, or by the
container (if the container supports this).

Connection management support
Support is provided by the ECI resource adapter for pooling connections from the
EJB server to the gateway daemon. This allows for optimization, by reducing the
amount of socket open and closes required for a series of ECI calls.

3.4.2 EPI resource adapter
The CICS EPI resource adapter uses the External Presentation Interface of the
CICS Transaction Gateway to communicate with CICS. It can start CICS
transactions by interacting with a virtual terminal. The virtual terminal represents
a 3270 terminal to the CTG user.

Transaction management support
The EPI deals only with the CICS 3270 interface, therefore, recoverable work is
not performed on the client. For this reason the CICS EPI resource adapter does
not support transactions.

Security management support
To communicate with a secure CICS region using the EPI, you must supply a
valid user ID and password. If you are using signon incapable terminals, then a
user ID and password are required for each request. Support for signon capable
terminals is provided by the LogonLogoff interface, which allows a Java

Restriction: WebSphere Application Server Advanced Edition V4.02 does not
currently provide the container mechanism for supplying the user ID and
password.
30 Java Connectors for CICS

developer to define a signon procedure in CICS (such as starting the CESN
transaction). For further details on the difference between signon and signon
incapable terminals when using the EPI resource adapter, refer to Example 8.3
on page 212.

Connection management support
Support is provided by the EPI resource adapter for pooling terminals installed
on the CICS region. This provides for optimization by reducing the amount of
network flows and CICS terminal install operations required for a series of EPI
calls.
 Chapter 3. CICS and the J2EE Connector Architecture 31

32 Java Connectors for CICS

Part 2 Connecting to
COMMAREA based
CICS programs

Part 2 describes how to develop ECI-based applications to invoke CICS
COMMAREA based programs. Information is provided on using the base CTG
ECIRequest class, and the J2EE CCI in a both a non-managed and a managed
environment.

Part 2
© Copyright IBM Corp. 2002 33

34 Java Connectors for CICS

Chapter 4. ECI and ESI applications

This chapter discusses how to the use the JavaGateway and ECIRequest objects
to call COMMAREA-based CICS applications, and the ESIRequest object to
invoke security functions in CICS.

This chapter covers the following topics:

� Base classes overview
� Synchronous ECI calls
� Asynchronous ECI calls
� ESI calls
� Extended logical units of work
� Tracing
� Exception handling

The sample applications shown in this chapter, are a set of classes in the
packages itso.cics.eci and itso.cics.esi. Instructions on how to download
the sample code are in Appendix D., “Additional material” on page 261.

4

© Copyright IBM Corp. 2002 35

4.1 Base classes overview
The CTG itself provides a Java class library consisting of a set of base classes,
namely the JavaGateway, ECIRequest, EPIRequest, ESIRequest and
CicsCpRequest classes, in the com.ibm.ctg.client package. These classes are
relatively simple to use, but do require a greater understanding of the workings of
CICS, compared to the use of J2EE CCI or the EPI support classes.

A Java application can use the base classes to communicate with a CICS system
through the CTG. The Java API is provided in the JAR file ctgclient.jar, and is
used to make a network connection to a gateway daemon. The gateway daemon
(coded in Java) listens for remote requests from Java clients, and invokes the
services of the underlying client daemon (code in native code) using the Java
Native Interface (JNI). This scenario is illustrated in Figure 4-1 for a Java client
using a CTG on Windows NT. On OS/390 the EXCI is used in place of the client
daemon to provide an ECI interface to Java applications.

Figure 4-1 CTG scenario for ECIRequest application

The Java code may be a simple application on a workstation deployed as a
two-tier application, or in an Web application server as part of a three-tier
application architecture. The CTG may be installed on a separate workstation as
the Web application, on a S/390 host, or on the same machine as the Java
application runs. For more details on the infrastructure of the CTG, refer to
Chapter 2, “CICS Transaction Gateway” on page 9.

OS/390

CICS TS V1.3
 Region

 ECIPROG
 program

SCSCPAA6
Create JavaGateway
Open the connection
Create ECIRequest
Flow the request

Examine the response
Close the connection

Windows client

Java CCI
application

C
O
M
M
A
R
E
A

Client
daemon

Gateway
daemon

Port
 2006

CTG V4.0.1

Windows NT
gunner

JNI
36 Java Connectors for CICS

4.1.1 JavaGateway overview
The basis of the communication from the Java application to the CTG is provided
by the JavaGateway class, which encapsulates the behavior of the CTG itself, and
acts as an interface for it. The actual JavaGateway is just a wrapper class, and
there are several underlying classes, also provided in the ctgclient.jar file,
that do the real work.

The JavaGateway object represents a logical connection between your program
and the CTG. This applies equally when you specify a network protocol such as
tcp://gunner:2006, or if you use the local gateway by specifying the protocol
local:.

The local gateway is a special type of JavaGateway that allows you to use a CTG
installed on the same machine as the Java application. It allows you to bypass
the gateway daemon and the associated network overheads, and uses the JNI to
directly invoke the services of the CTG client daemon.

Program flow
The flow of a Java program that uses the JavaGateway to connect to a CTG
follows these steps:

1. The Java program instantiates a JavaGateway object. Two JavaGateway
constructors simplify the creation of a JavaGateway by setting the relevant
properties and implicitly calling the open() method for you. On return from a
successful call to one of these constructors, the resultant JavaGateway is
opened, and the underlying connection to the CTG will have been made.

2. The Java program creates an instance of one of the gateway request classes
containing these requests:

a. An ECIRequest object is created for an ECI request.

b. An ESIRequest object is created for an ESI request.

c. An EPIRequest object is created for an EPI request. This is not discussed
in this book. For details on the alternative EPI support classes refer to
Chapter 7, “EPI support classes” on page 155).

d. A CicsCpRequest object is created for querying the code page of the CTG
the CicsCpRequest object is using. (Refer to CicsCpRequest object in
Appendix B.2, “Conversion within CICS: DFHCNV templates” on
page 232.)

3. The Java application then flows the request to the CICS Transaction Gateway
using the flow() method of the JavaGateway object.

4. The Java program checks the return code of the flow operation to see
whether the request was successful.
 Chapter 4. ECI and ESI applications 37

5. The program continues to create request objects and flow them through the
JavaGateway object, as appropriate.

6. The Java program then closes the JavaGateway object, using the close()
method.

Supported protocols
The JavaGateway supports the following network protocols from remote Java
clients:

TCP This is a simple TCP/IP socket-based communication,
and is the easiest to use while providing the fastest
network connections.

SSL This is a secure sockets layer (SSL) version of the TCP
protocol for secure communications.

HTTP This provides HTTP support to allow communication
through a HTTP proxy in a firewall configuration.

HTTPS This is a SSL version of the HTTP protocol. It can be used
through a Java applet, or from a Java application, if the
Java environment provides support.

There is also support for a local gateway using the following protocol:

local This is used when the Java application and the CTG
reside on the same host (often the case in a servlet
configuration). It provides optimized communication by
removing the network latency associated with TCP/IP
calls to the gateway daemon.

Configuration
When you create a JavaGateway, you determine the protocol to use, and if
required, the connection details of the remote CTG. To do so, the JavaGateway
provides the following methods:

setProtocol() Sets the protocol to be used for the connection with the
CTG. Possible values are: tcp, http, https, ssl or local

setAddress() Sets the IP address were the CTG resides on. It may be a
hostname or a numerical IP address

setPort() Sets the port number on which the gateway daemon is
listening

setURL() To simplify you may use this method to set the former
three attributes through an URL parameter in the form:
protocol://address:port/.
38 Java Connectors for CICS

open() This method opens the connection between the Java
client and the CTG.

close() Closes an open connection

isOpen() This is a useful method to check if the connection is still
alive.

flow() This method is used to flow or pass a request object to the
CTG once the gateway is opened.

4.1.2 ECIRequest overview
The External Call Interface (ECI) allows non-CICS applications to call a CICS
program on a CICS server. ECI calls are made using an ECIRequest object.
These calls are of three types (the type that is controlled by setting the Call_type
parameter in the ECIRequest object to the proper value):

� Program link calls
� Status information calls
� Reply solicitation calls.

Program link calls
A program link call causes a CICS program to be called on a CICS server. These
calls can be one of two types:

Synchronous This is a blocking call, and the client application is
suspended until the called program has finished. For further
information refer to 4.2, “Synchronous ECI calls” on page 40.

Asynchronous This is a non-blocking call, and the calling application gets
control back without reference to the completion of the called
program. The application can ask to be notified later when
the information is available by using a reply solicitation call to
determine the outcome of the asynchronous request. For
details refer to 4.3, “Asynchronous ECI calls” on page 44.

Status information calls
Status information calls retrieve status information about the type of system on
which the application is running, and its status. These calls can be either
synchronous or asynchronous, although there is little value in using an
asynchronous call type to query the status of a server.

Tip: Remember that the JavaGateway provides constructors that simplify its
configuration by setting the relevant properties, and implicitly calling the open
method for you.
 Chapter 4. ECI and ESI applications 39

Reply solicitation calls
Reply solicitation calls are used to get information back after asynchronous calls
have been made. Reply solicitation calls can be one of two types:

General These retrieve information for any outstanding pieces of work

Specific These retrieve information for a named asynchronous
request. An application that uses the asynchronous method
of calling may have several program link and status
information calls outstanding at any time.

4.1.3 ESIRequest overview
The ESIRequest class provides access to password expiration management
(PEM) security services in an attached CICS region. These services are
implemented in CICS by the External Security Manager (ESM), for which RACF
is often used.

ESI functions
The ESIRequest class provides the following PEM functions:

Verify Password Allows a client application to verify that a password
matches the password for a given user ID stored by the
CICS ESM

Change Password Allows a client application to change the password held by
the CICS ESM for a given user ID

For further application development details refer to 4.4, “ESI calls” on page 53.

4.2 Synchronous ECI calls
To make synchronous ECI calls to CICS, you need to create an ECIRequest
objects and flow this using a JavaGateway object. The JavaGateway must be
correctly configured before the request is flowed. This involves setting the
attributes such as the CICS server name, the program name, and the user ID
and password if required.

Restriction: During this redbook project we found that status calls did not
provide reliable information about the status of the CICS server in all
circumstances. Therefore, our advice is to use exception handling to check the
server status, instead of a status call. A simple method would be to create a
dummy CICS program and use this to obtain the status through polling.
40 Java Connectors for CICS

4.2.1 ECIRequest configuration
There are several attributes of the ECIRequest object that must be supplied with
proper values before flowing the request. These attributes are:

Server The CICS region where the program resides

Program The name of the program to execute

Extended_Mode Whether this call is to be extended through several
client/server interactions, or not. Possible values are:

– ECI_EXTENDED
Indicates that this call is the first of several program link calls that will
constitute a single logical unit-of-work (LUW). These series of calls need
to be finished with a commit or rollback.

– ECI_NO_EXTEND
Indicates that this is a single program link call that is, by itself, a complete
LUW. It does not need a commit or backout. If the call ends with no error,
the changes will be committed, otherwise they will be rolled back.

– ECI_COMMIT
Commits all the changes since the beginning of this LUW

– ECI_BACKOUT
Rolls back all the changes since the beginning of this LUW

Luw_Token A token that identifies a unique LUW. All LUWs including
single program link calls, begin with a value of
ECI_NEW_LUW. When using extended LUWs, the CTG
returns a unique value for this attribute to identify the
specific LUW.

Commarea The byte array holding the COMMAREA input and output
data.

Commarea_length The length of the COMMAREA byte array

Userid The user ID of the CICS server. This is only required if
security is enabled in CICS.

Password The password for the specific user ID. This is only
required if security is enabled in CICS.

4.2.2 Program flow
Synchronous ECI requests are the simplest way of calling CICS programs using
the CTG. When a synchronous ECI request is made, the calling application
blocks until the reply is received from CICS.
 Chapter 4. ECI and ESI applications 41

Figure 4-2 illustrates the program flow from the creation of a JavaGateway object
to the synchronous ECI call. This sample code executes the CICS program
ECIPROG on the CICS server SCSCPAA6, connecting through TCP/IP, to the
CTG listening on port 2006, on the host gunner. This code is supplied as the
sample class SyncECI provided with this book.

The CICS program ECIPROG requires an input COMMAREA of 27 bytes in
length. No input data is required, and ECIPROG will return the 8 character CICS
APPLID, and the date and time on CICS. The code for ECIPROG is supplied in
C.2, “ECIPROG” on page 244.

Figure 4-2 Synchronous ECI call

The import statements required for this sample code are shown below:

import com.ibm.ctg.client.JavaGateway;
import com.ibm.ctg.client.ECIRequest;
import java.io.IOException;

The logic in the code is as follows:

� 1 Instantiate the JavaGateway object that will provide the connection to the
CTG, and configure the connection through the constructor.

The constructor opens the JavaGateway for us, so we do not need to explicitly
call the open() method.

� 2 Construct a byte array data structure for the COMMAREA and initialize the
COMMAREA input data.

try {
1 JavaGateway jg= new JavaGateway("tcp://gunner",2006);
2 byte commarea[]=("---------------------------").getBytes("IBM037");
3 ECIRequest req= new ECIRequest(ECIRequest.ECI_SYNC, //sync or async

"SCSCPAA6", //CICS server name
null, null, //userid & password
"ECIPROG", //program name
"CPMI", //transaction ID
commarea, commarea.length, //commarea data & length
ECIRequest.ECI_NO_EXTEND, //extended mode
ECIRequest.ECI_LUW_NEW); //LUW token
System.out.println("Comm in: " + new String(req.Commarea, "IBM037"));

4 jg.flow(req);
5 System.out.println("Comm out: " + new String(req.Commarea, "IBM037"));

System.out.println("Rc: " + req.getRc());
6 jg.close();
}catch (IOException ioe) {

System.out.println("Handled exception: " + ioe.toString());
}

42 Java Connectors for CICS

Initialize the input to 27 characters in order to illustrate the difference between
input and output data when printing to the console.

� 3 Instantiate a request object.

Create an ECIRequest object and configure it through its constructor. Use the
extended constructor and supply the call type, server name, program name,
transaction ID, COMMAREA data and its length, and information on the
logical unit of work token. The attribute that identifies this request as
synchronous is the Call_type with value ECI_SYNC.

Our example specifies the default transaction ID CPMI. In a real-life scenario
you should contact your CICS systems programmer to determine if the use of
a customized mirror transaction ID is required.

� 4 Flow the request.

The request is flowed to CICS through the CTG by invoking the flow()
method on the JavaGateway object. The program flow blocks at this point until
a reply is received back with the return data in the COMMAREA.

� 5 Write the COMMAREA output and ECI return code to the console. The
COMMAREA data is converted from the EBCDIC IBM037 code page to a
String, which is Unicode. For more details on different options for handling
data conversion, refer to Appendix B, “Data conversion” on page 227.

� 6 Close the gateway connection by invoking the close() method on the
JavaGateway object. This closes the underlying socket connection to the CTG.

The output for this code should be as shown in Example 4-1.

Example 4-1 SyncECI output

Comm in: ---------------------------
Comm out: SCSCPAA6 13/12/01 20:54:08
Rc: 0
 Chapter 4. ECI and ESI applications 43

4.3 Asynchronous ECI calls
Unlike synchronous calls, asynchronous ECI calls do not block, so control is
returned to the application before the response is returned from the CTG. To
receive the response, it is necessary to explicitly flow another request in order to
obtain the reply. Therefore, an asynchronous call involves two steps, the call and
the reply.

An asynchronous call is specified by setting the Call_type attribute set to
ECI_ASYNC on an ECIRequest object. The request object can be reused on a
subsequent call to receive the response, by setting its Call_type attribute to one
of the possible values for reply solicitation calls, such as
ECI_GET_SPECIFIC_REPLY_WAIT.

There is also another way to implement asynchronous calls using just one
request. This is done through callback objects. The callback object is
associated with the asynchronous request, so that the callback object is notified
when the reply is ready.

4.3.1 Reply solicitation calls
Reply solicitation calls are used to solicit a reply for a previous asynchronous ECI
call. The CTG queues the asynchronous requests and responses. There are four
different call types for reply solicitation calls, classified into two types:

� Generic reply solicitation calls
� Specific reply solicitation calls

General reply solicitation calls
These call types retrieve any pending response from the CTG. There are two call
types that you can use:

ECI_GET_REPLY Provides a non-blocking reply solicitation call

ECI_GET_REPLY_WAIT Provides a blocking reply solicitation call

Note: We recommend that you do not use general reply solicitation calls
because they can receive any response queued in the CTG, therefore, one
application can receive a reply destined for a different application. Their use is
discouraged when using a remote CTG. Instead, it is recommended you use
specific reply solicitation calls, or callback objects.
44 Java Connectors for CICS

Specific reply solicitation calls
These call types retrieve a specific response pending in the CTG. To identify the
specific response, you need to supply a message qualifier. This is specified using
an int value that uniquely identifies the ECI call and its associated response.
There are two call types which can be used:

� ECI_GET_SPECIFIC_REPLY

Provides a reply solicitation call to return reply information for a specific
asynchronous request. The specific request is referred through the message
qualifier of the request. If there is no such reply, ECI_ERR_NO_REPLY is
returned.

� ECI_GET_SPECIFIC_REPLY_WAIT

Provides a reply solicitation call to return reply information for a specific
asynchronous request. If there is no such reply, the request will block until one
is ready.

4.3.2 Program flow
Using an asynchronous ECI request enables the calling Java application to make
non-blocking calls to CICS. The program flow steps to make a successful
asynchronous ECI call are:

1. Invoke the setAutoMessageQual() method on the ECIRequest object, passing
a true value as the input parameter. This method ensures that unique
message qualifiers will be assigned.

2. Flow the asynchronous ECIRequest.

3. Store the message qualifier returned from the ECI request in order to retrieve
the asynchronous response later.

Attention: To use general reply solicitation calls with the CTG, you have to
enable this support by selecting the box labelled: Let Java clients obtain
generic ECI replies in the CTG configuration tool.

Restriction: Message qualifiers are not supported when communicating
with a CTG on OS/390, either using a gateway daemon on OS/390, or
using the local protocol from an application on OS/390. A specific reply
solicitation call will return the response ECI_ERR_NO_REPLY if used.
 Chapter 4. ECI and ESI applications 45

The simplest way to do this is to reuse the ECIRequest object for the
subsequent reply solicitation call, as the message qualifier is returned within
this object. However, it is also possible to invoke the getMessageQualifier()
method on the ECIRequest object, which will return the message qualifier that
can then be saved, allowing the ECIRequest object to be reused for other
purposes.

4. Make the reply solicitation call using an ECIRequest object, with its message
qualifier set to the value previously obtained from the flowed program link call.

Sample code is shown in Figure 4-3 for making an asynchronous ECI call to
invoke the ECIPROG program on the CICS server SCSCPAA6, using the CTG on
tcp://gunner, and a specific reply solicitation call. Another request object was
not created for the reply solicitation call, instead the ECIRequest object used for
the program link call was reused. After the flow of the program link, the
ECIRequest message qualifier value changes. As you reuse the same instance,
do not reset this value for the specific reply solicitation call. This code is supplied
in the sample class AsyncECI provided with this book.

Figure 4-3 Asynchronous call with a specific reply solicitation call

try {
1 JavaGateway jg= new JavaGateway("tcp://gunner",2006);
2 byte commarea[]=("---------------------------").getBytes("IBM037");
3 ECIRequest req= new

ECIRequest(ECIRequest.ECI_ASYNC, //call type: sync or async
"SCSCPAA6", //CICS server name
null, null, //userid & password
"ECIPROG", //program name
"CPMI", //transaction id
commarea, commarea.length, //commarea data & length
ECIRequest.ECI_NO_EXTEND, //extended mode
ECIRequest.ECI_LUW_NEW); //LUW token

System.out.println("(Main) Comm in: " + new String(req.Commarea,
"IBM037"));

4 req.setAutoMsgQual(true);
5 jg.flow(req);

//we reuse the request object as many attributes remain unchanged
6 req.Call_Type= ECIRequest.ECI_GET_SPECIFIC_REPLY_WAIT;
7 jg.flow(req);
8 System.out.println("Comm out: " + new String(req.Commarea,

"IBM037"));
System.out.println("Rc: " + req.getRc());

9 jg.close();
}catch (IOException ioe){

System.out.println("(Main) Handled exception: " + ioe.toString());
}

46 Java Connectors for CICS

The output should resemble Example 4-1 on page 43. The logic in this code is
as follows:

� 1 Instantiate the JavaGateway object that will provide the connection with the
CTG and configure the connection through the constructor.

The constructor will implicitly open the connection to the gateway, so that
future ECI requests may be flown.

� 2 Construct a byte array data structure for the COMMAREA, and initialize the
COMMAREA data.

Initialize the byte array to ’-’ chars so that any updates to the COMMAREA are
highlighted when the printing to the console. The length of the COMMAREA is
27 bytes.

� 3 Instantiate the ECIRequest object.

Configure the ECIRequest object through its constructor. The call type, server
name, program name, transaction ID, the COMMAREA data, and its length
and information on the logical of unit of work, are all supplied. Specify the
default CICS mirror transaction ID CPMI. If required, this can be overridden
by a user private mirror transaction. This may be useful for monitoring or
security purposes.

� 4 Invoke setAutoMessageQualifier() method with the value true.

This will ensure safe message qualifier generation when the request is
flowed.

� 5 Flow the request to CICS through the gateway.

The request is passed to the CTG and it flows to the CICS server. At this
point, the request will get a message qualifier assigned from the CTG. If you
do not want to reuse the ECIRequest object (like the examples), store the
value of the message qualifier after flowing the request in order to place the
specific reply solicitation call later.

� 6 Reusing the ECIRequest object, reinitialize it to place a specific reply
solicitation call.

� 7 Flow the specific reply solicitation call.

� 8 Write the COMMAREA returned to the console. There will be a conversion
of the COMMAREA data, from the EBCDIC IBM037 code page, to a Unicode
string.

� 9 Close the gateway connection, as it is no longer needed.

This closes the underlying TCP/IP socket connection to the gateway daemon.
 Chapter 4. ECI and ESI applications 47

4.3.3 Callback objects
The ECIRequest class supports callback objects. A callback object must
implement the Callbackable interface and is associated with an ECIRequest
object invoking setCallback() on the request object

Once the association is made, and the request flown, the callback object will be
notified and provided with the data, when the reply for the associated request is
ready. This makes the callback object the perfect approach for asynchronous
calls.

You can specify a callback object for all ECIRequest call types (not just
asynchronous call types). In the case of synchronous calls, the results are
passed to your Callbackable object, as well as to your ECIRequest object, in the
flow request.

The Callbackable interface that the callback object must implement, defines
these two methods:

setResults() This method is invoked when the response for the
ECIRequest is ready. It will provide your implementation
with the COMMAREA data as a byte array typed
parameter. Your implementation of this method should be
able to store the COMMAREA data for later use.

run() After invoking the setResults() method, the JavaGateway
will create a thread that will be able to execute the run()
method. This method is inherited from the Runnable
interface that the Callbackable interface extends. Your
implementation of this method should be able to do all the
result data management.

For our sample application, a callback object has been developed. The code for
this callback example is provided in package itso.cics.eci in the classes:
AsyncCallbackECI, Callback, and the interface: Sleeper.

Timestamps in both the application and the callback object have been added to
show how the program flows through time. The callback object implementation
is shown in Figure 4-4.
48 Java Connectors for CICS

Note that in the run() method, a timestamp is written to the console, which
wakes up the main thread.

Figure 4-4 The callback object implementation

The import statements used for this class are those shown below:

import com.ibm.ctg.client.Callbackable;
import com.ibm.ctg.client.ECIRequest;
import java.io.UnsupportedEncodingException;
import java.text.SimpleDateFormat;
import java.util.Date;

Attention: If you try to build your own sample application using a callback
object, you may encounter a problem during testing. Your sample application
may flow requests from its main() method. Due to the asynchronous behavior
of the callback object, your application may terminate before the callback
object performs any task. To avoid this problem, we implemented a
synchronization mechanism so that the application does not terminate until
the run() method of the callback object finishes. This is achieved through the
Sleeper interface shown in Figure 4-5.

public class Callback implements Callbackable {
private byte[] results = null;
private Sleeper callbackListner = null;
public Callback(Sleeper listener) {

super();
}
public Callback(Sleeper listener) {

callbackListner=listener;
}
public void run() {

System.out.println("(Callback) Response ready at: " + (new
SimpleDateFormat("HH:mm:ss:SSS")).format(new Date()));

try {
System.out.println("(Callback)\t\tCOMMAREA: " + new String(results,

"IBM037"));
} catch (UnsupportedEncodingException uee) {
}
((Sleeper)callbackListner).wakeUp();

}

public void setResults(com.ibm.ctg.client.GatewayRequest req) {
results=((ECIRequest)req).Commarea;

}
}

 Chapter 4. ECI and ESI applications 49

The Sleeper interface shown in Figure 4-5 defines three methods to be
implemented by the sample application, in order to perform synchronization
tasks with the callback object.

Figure 4-5 The Sleeper interface

Synchronization is performed through a wait/notify mechanism. See the
application sample code in Figure 4-6 to see how these methods are
implemented.

Figure 4-6 Implementation of the Sleeper interface

The sample application code in Figure 4-7 shows how to write a sample
application that asynchronously invokes the CICS program ECIPROG on the
CICS region SCSCPAA6, using a callback object.

public interface Sleeper {
void sleep() throws InterruptedException;
void sleep(int timeout) throws InterruptedException;
void wakeUp();

}

boolean notified=false;
public void sleep()throws InterruptedException {

synchronized (this){
if(!notified){

wait();
}
notified=false;

}
}
public void sleep(int timeout)throws InterruptedException {

synchronized (this){
if(!notified){

wait(timeout);
}
notified=false;

}
}
public void wakeUp(){

synchronized (this){
notified=true;
notify();

}
}

50 Java Connectors for CICS

Figure 4-7 Java code for asynchronous request with callback

The import statements for this asynchronous request with callback are shown
below:

import com.ibm.ctg.client.JavaGateway;
import com.ibm.ctg.client.ECIRequest;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.io.IOException;

try {
JavaGateway jg= new JavaGateway();
jg.setURL("tcp://gunner:2006");
jg.open();
byte commarea[]= new byte[27];
commarea= ("---------------------------").getBytes("IBM037");

1 ECIRequest req= new ECIRequest(ECIRequest.ECI_ASYNC,
"SCSCPAA6", //CICS server name
null, //userid
null, //password
"ECIPROG", //program name
"CPMI", //transaction id
commarea, //commarea data
commarea.length, //commarea length
ECIRequest.ECI_NO_EXTEND, //New LUW
ECIRequest.ECI_LUW_NEW); //LUW token

2 req.setCallback(new Callback(this));
SimpleDateFormat df=new SimpleDateFormat("HH:mm:ss:SSS");
System.out.println("(Main) Before flowing: " + df.format(new Date()));
System.out.println("(Main)\t\tCOMMAREA: " + new String(req.Commarea,

"IBM037"));
3 jg.flow(req);

System.out.println("(Main) After flowing: " + df.format(new Date()));
System.out.println("(Main)\t\tCOMMAREA: " + new String(req.Commarea,

"IBM037"));
System.out.println("(Main)\t\tRc: " + req.getRc());
System.out.println("(Main) After response: " + df.format(new Date()));
System.out.println("(Main)\t\tCOMMAREA: " + new String(req.Commarea,

"IBM037"));
System.out.println("(Main) Rc: " + req.getRc()+"; "+req.getRcString());

4 sleep();
jg.close();

}catch (IOException ioe) {
System.out.println("(Main) Handled exception: " + ioe.toString());

}catch (InterruptedException ie) {}
 Chapter 4. ECI and ESI applications 51

The logic in the code in Figure 4-7 is as follows:

� 1 After creating a COMMAREA instantiate and configure the ECIRequest
object through its constructor.

� 2 Associate the callback object to the request.

It is passing the application object, this, to the callback object constructor
for synchronization purposes. The application object is to be notified by the
callback object when the reply is processed.

� 3 Flow the request.

No other request is flown apart from the ECI_ASYNC program link call. No reply
solicitation call is needed. The CTG will inform the callback object as soon as
a response is ready.

� 4 Invoke the sleep() method. (Refer to Figure 4-6 on page 50 to view how the
application class implements this method from the Sleeper interface).

All the synchronization that is implemented through an interface is due to the
fact that both the wait() and notify() methods must be synchronized on the
same object, or monitor. That object monitor should be owned by the waiting
object. Any Java object may be a monitor. An object owns a monitor when it is
the monitor (this), or when it created it.

The sleep() method invokes a wait() synchronized on the application object
(the application object acts as a monitor). To unlock the application a
notify(), synchronized on the same monitor (the application object), must be
invoked on the waiting object (also the application object). This unlocking is
performed by the wakeUp() method.

The waiting object (the application waits until the callback object has finished
processing the reply) and the object that performs a notify on it (the callback
object will tell the application when he has finished the processing) must know
the object where synchronization takes place.

The output from the execution of the sample code is shown in Example 4-2.

Example 4-2 AsyncCallbackECI output

(Main) Before flowing: 18:28:03:416
(Main) COMMAREA: ---------------------------
(Main) After flowing: 18:28:03:526
(Main) COMMAREA: ---------------------------
(Main) Rc: 0
(Main) After response: 18:28:03:526
(Main) COMMAREA: ---------------------------
(Main) Rc: 0; OK
(Callback) Response ready at: 18:28:03:666
(Callback)COMMAREA: SCSCPAA6 13/12/01 21:28:18
52 Java Connectors for CICS

4.4 ESI calls
The External Security Interface (ESI) offered by the CTG is a Java interface to
Password Expiration Management (PEM). This is used to verify and change the
user ID and password information stored in CICS. PEM is part of the APPC
architecture. A PEM server, such as CICS, is written to send and receive the
architected PEM flows using the APPC communication protocol. The two
architected functions are verification of passwords, and changing of passwords,
and these invoke the corresponding CICS commands EXEC CICS VERIFY
PASSWORD and EXEC CICS CHANGE PASSWORD, which interface with the
CICS External Security Manager (ESM) such as RACF, in order to perform the
desired operation (Figure 4-8).

Figure 4-8 CICS Password Expiration Management

The ESI provides access to security services implemented in CICS through the
com.ibm.ctg.client.ESIRequest class. The configuration of the ESIRequest
object can be done through two static methods that generate an ESIRequest that
is properly configured for the request you want to flow.

verifyPassword() This method takes as arguments three String objects: the
user ID, the password, and the server. The method is
static and returns an ESIRequest object, which when

Note: Because PEM is based on the APPC architecture, the ESI can only be
used over APPC or TCP62 connections to a CICS/ESA, or CICS TS region on
OS/390 or VSE/ESA. For further details on PEM, refer to the CICS RACF
Secur ity Guide, SC33-1701.

RACF

CICS

P
E
M

APPC

EXEC CICS VERIFY
PASSWORD

PEM client

EXEC CICS CHANGE
PASSWORD

or
 Chapter 4. ECI and ESI applications 53

flown, will cause CICS to check the password for the given
user ID.

changePassword() This method takes as arguments four String objects: the
user ID, the current password, the new password, and the
server. This method is static and returns an ESIRequest
object, which when flown, will attempt to change the
current password of the specified user ID in the specified
server.

The ESIRequest object also provides a few utility methods, to be invoked once the
request has been flown, such as:

getExpiry() This method retrieves a java.util.Calendar object with
the expiration date of the specified password.

getLastAccess() This method retrieves a java.util.Calendar object with
the date of the last access to the server by the specified
user ID.

getLastVerified() This method retrieves a java.util.Calendar object with
the date of the last time a password verification was flown
for the specified user ID.

Figure 4-9 provides sample code on how to verify a user ID/password pair. The
sample code verifies the user ID CICSRS3 with password PASSWORD on server
SCSCPAA7, connecting through the CTG on tcp://gunner:2006/.

Figure 4-9 Password verification

try{
 JavaGateway jg= new JavaGateway("tcp://gunner", 2006);
 ESIRequest
 req=ESIRequest.verifyPassword("CICSRS9","PASSWORD","SCSCPAA7");
 jg.flow(req);
 System.out.println("Expiry date: "
 +((req.getExpiry()!=null)?""+req.getExpiry().getTime():"(empty)"));
 System.out.println("Last access: "
 +((req.getLastAccess()!=null)?""+req.getLastAccess().getTime()
 :"(empty)"));
 System.out.println("Last verified: "
 +((req.getLastVerified()!=null)?""+req.getLastVerified().getTime()
 :"(empty)"));
 System.out.println("Rc: "+req.getRc());
 jg.close();
}catch(IOException ioe){

System.out.println("Handled exception: "+ioe.getMessage());
}

54 Java Connectors for CICS

 This sample code requires the following import statements:

import java.io.IOException;
import com.ibm.ctg.client.JavaGateway;
import com.ibm.ctg.client.ESIRequest;

This sample code is provided with this book in package itso.cics.esi in class
VerifyESI. The output for this sample code should be as shown in Example 4-3.

Example 4-3 VerifyESI output

Expiry date: Wed Dec 31 00:00:00 PST 0002
Last access: Tue Dec 11 17:44:20 PST 2001
Last verified: Thu Dec 13 21:37:22 PST 2001
Rc: 0

Figure 4-10, also provides sample code for the changing of a password. The
sample code changes the CICSRS9 user’s password from PASSWORD to NOV2001
on the CICS server SCSCPAA7, connecting through the CTG on
tcp://gunner:2006/.

Figure 4-10 Password changing

This code is also in package itso.cics.esi as the class ChangeESI.

try {
JavaGateway jg= new JavaGateway("tcp://gunner", 2006);
ESIRequest req=

ESIRequest.changePassword("CICSRS9","NOV2001","PASSWORD","SCSCPAA7");
jg.flow(req);
System.out.println("Rc: "+req.getRc());
jg.close();

} catch (IOException ioe) {
System.out.println("Handled exception: "+ioe.getMessage());

}

 Chapter 4. ECI and ESI applications 55

4.5 Extended logical units of work
Before considering how to extend logical units of work (LUWs) we should first
explain what one is. In CICS terms a logical unit of work (also termed a unit of
work) is a recoverable sequence of operations within a transaction. The start and
end of which are marked by synchronization points, where the LUW is either
committed or rolled-back. If there are no explicit synchronization points within a
transaction then the start and end of the transaction are themselves implicit
synchronization points.

To illustrate the concept, imagine a bank transaction that consists of debiting
money from one account, and crediting it to another. If you debit the money from
one account, but the credit process fails, the data falls into an inconsistent state
according to where the money was lost. So, the action of subtracting from one
account, and adding the same amount to another account, needs to be carried
out as one LUW.

If this operation is performed by a series of ECI calls, one would need to extend
the LUW created by the first program, so that the second ECI call is executed
within the scope of the logical unit of work that was created by the first ECI call.
This is achieved within CICS by causing the mirror program, which executes ECI
requests to remain active, after an ECI request has terminated. (The mirror
program usually terminates at the end of each ECI request). The mirror program
only terminates when a request is received to end the LUW.

To extend a logical unit of work in an ECI request is a simple matter of setting the
Extended_Mode and Luw_Token attributes on the ECIRequest object. The
Extended_Mode should be set to the constant ECI_EXTENDED and the Luw_Token is
then taken from the first request and used to identify the extended LUW in further
ECI calls.

The sample application ECIADDER
In this section we utilize a sample COBOL application called ECIADDER; the
input and output COMMAREAs are shown in Figure 4-11 and Figure 4-12.

Attention: In computing literature, the term transaction is often used to refer
to a recoverable unit of work. However, in CICS, the term transaction has
traditionally referred to a task running within CICS, which can be composed of
one or more recoverable units of work.
56 Java Connectors for CICS

Figure 4-11 ECIADDER output COMMAREA

Figure 4-12 ECIADDER input COMMAREA

The code for these COBOL structures is shown below, and the full COBOL
source code for the ECIADDER program can be found in C.1, “ECIADDER” on
page 242. This is shipped as a sample with this redbook.

01 COMMAREA-RETURN.
 03 DATA-OUT PIC S9(3) DISPLAY SIGN IS
 LEADING SEPARATE CHARACTER.
 03 Q-RC PIC ZZZ9 DISPLAY.
 03 FILLER-1 PIC X(4) VALUE SPACE.

 LINKAGE SECTION.
 01 DFHCOMMAREA.
 03 DATA-IN PIC S9(3) DISPLAY SIGN IS
 LEADING SEPARATE CHARACTER.
 03 QNAME PIC X(8).

This COMMAREA is character based, and takes as input an integer value
(DATA-IN) and a temporary storage queue name (QNAME). It adds the integer to
the value already stored in the queue, and then returns the result (DATA-OUT)
along with a return code (Q-RC).

You can subsequently call ECIADDER to see how the value of the queue
increases (or decreases if provided with negative integers) at each call. If you call
ECIADDER, as we have learned from 4.2, “Synchronous ECI calls” on page 40,
you will be executing single LUWs. Now we will show you how to make several
calls to ECIADDER. See how the value on the queue has increased, and finally
undo the changes on the queue to bring it back to its first state, or commit the
changes to confirm them. The code example for this is shown in Figure 4-13 and
is provided as the class ExtendedLUW.

DATA-OUT Q-RC FILLER-1

3 bytes 4 bytes 4 bytes

DATA-IN QNAME

3 bytes 8 bytes
 Chapter 4. ECI and ESI applications 57

Figure 4-13 Extending an LUW

try {
1 JavaGateway jg= new JavaGateway("tcp://gunner",2006);
2 ECIRequest req= new ECIRequest(ECIRequest.ECI_SYNC, //sync.async

"SCSCPAA6", //CICS server name
null, null, //userid & password
"ECIADDER", //program name
"CPMI", //transaction id

3 ("+000RMYQUEUE").getBytes("IBM037"),12, //commarea data & length
4 ECIRequest.ECI_NO_EXTEND, //will extended LUW
5 ECIRequest.ECI_LUW_NEW); //LUW token
6 jg.flow(req);
7 System.out.println("Queue starting value:"+(new

String(req.Commarea,"IBM037")).substring(0,4));
8 req.Commarea=("+010RMYQUEUE").getBytes("IBM037");

9 req.Extend_Mode=ECIRequest.ECI_EXTENDED;
req.Luw_Token=ECIRequest.ECI_LUW_NEW;
jg.flow(req);
System.out.println("Queue after adding 10: "+(new

String(req.Commarea,"IBM037")).substring(0,4));

10 req.Extend_Mode=ECIRequest.ECI_BACKOUT;
jg.flow(req);

11 req.Commarea=("+000RMYQUEUE").getBytes("IBM037");
req.Extend_Mode=ECIRequest.ECI_NO_EXTEND;
req.Luw_Token=ECIRequest.ECI_LUW_NEW;
jg.flow(req);
System.out.println("Queue after rollback: "+(new

String(req.Commarea,"IBM037")).substring(0,4));

12 req.Commarea=("+010RMYQUEUE").getBytes("IBM037");
req.Extend_Mode=ECIRequest.ECI_EXTENDED;
req.Luw_Token=ECIRequest.ECI_LUW_NEW;
jg.flow(req);

 req.Commarea=("-007RMYQUEUE").getBytes("IBM037");
 jg.flow(req);

13 req.Extend_Mode=ECIRequest.ECI_COMMIT;
jg.flow(req);
System.out.println("Queue after adding (10-7): "+(new
String(req.Commarea,"IBM037")).substring(0,4));

14 jg.close();
}catch (IOException ioe) {

System.out.println("Handled exception: " + ioe.toString());
}

58 Java Connectors for CICS

The logic in this sample is described below, and the sample code for this
example is supplied in package itso.cics.eci in class ExtendedLUW.

� 1 Instantiate the gateway, configure, and open it using the relevant
constructor.

� 2 Instantiate the ECIRequest object that will be reused throughout all the
sample code. Configure it through its constructor:

– 3 Set the COMMAREA to match the DFHCOMMAREA fields in the ECIADDER
program, and inform the request object about the size of the COMMAREA.
For details of the ECIADDER source code refer to Appendix C.1,
“ECIADDER” on page 242.

The COMMAREA for ECIADDER is character data, and has a 12-byte
length. The first four characters represent the signed value to be added to
the value that is currently stored in the queue. One character is for the
sign, and the other three are numeric characters. The 8 remaining bytes
are the name of the queue. Since it is the character data, it must be
formatted to the correct code page. Use the EBCDIC code page IBM037,
as it is the CICS server code page.

If the numeric value is 0, then the application will effectively just read the
contents of the queue.

The queue that is accessed throughout the sample code is called
RMYQUEUE; the initial character of R denotes the queue as recoverable
due to a CICS TSMODEL definition that signifies all queues prefixed with
R as being recoverable.

– 4 Set the ECIRequest Extended_Mode attribute to ECI_NO_EXTEND.

The first call to ECIADDER is to check the initial value of the queue,
therefore, do not extend this call, as it is not recoverable.

– 5 Set the Luw_Token to ECI_NEW_LUW to indicate the CTG that this is the first
call of this LUW.

Set the Extended_Mode attribute to ECI_NO_EXTEND; this will be the first and
only call of this LUW.

� 6 Flow the request to read the value stored in the queue, the result will be:

Queue starting value: +000

� 7 When printing the result, convert the COMMAREA from EBDCIC code page
IBM037 to a Unicode string. The numeric result is returned in the four first
bytes of the COMMAREA.

� 8 Create a new COMMAREA in order to add 10 to the value currently stored
in RMYQUEUE.
 Chapter 4. ECI and ESI applications 59

� 9 Configure the ECIRequest Extended_Mode attribute to ECI_NO_EXTENDED and
the Luw_token to ECI_NEW_LUW. Then flow the request passing the
COMMAREA created in line 8.

Extend the ECI call. However, in this case, after adding 10 to the value stored
in RMYQUEUE, undo the changes with a backout, so the result will be:

Queue after adding 10: +010

� 10 Configure the ECIRequest object Extended_Mode attribute to ECI_BACKOUT
and flow the ECI request. This will undo all the changes in this LUW.

This means that the action of adding 10 to the value in RMYQUEUE will have
no affect, since it will be rolled back, and the value in the queue will still be the
initial value.

� 11 After the backout, read the queue; this will confirm that no changes actually
took place, so the result will be:

Queue after rollback: +000

� 12 Again, create a new extended LUW. With the first flow, add 10 to the value
stored in RMYQUEUE, next subtract 7 (by adding -7) and finally, confirm
these actions with a commit.

The request still has an ECI_EXTENDED value for Extended_Mode and the
Luw_Token value remains unchanged since the last flow. The value of the
Luw_Token has been supplied by the CTG on the last flow. If you are using
different request objects, you should set the other request’s Luw_Token
attribute to the value returned by the CTG, as it is this value that identifies the
LUW throughout all the flows.

If you are reusing the request objects, none of these attributes must be
changed.

� 13 Reconfigure the ECIRequest object, changing the Extend_Mode attribute to
ECI_COMMIT, and flow the request.

This request will confirm the previous request made to the queue (adding 10
and subtracting 7) since starting this extended LUW in step 12. The CICS
mirror program will perform a synchronization point and commit the updates
made to the queue, so that the result will be:

Queue after adding (10-7): +003

Attention: You should be careful when extending a logical unit of work
across multiple program link calls that may span a long time (for example,
across user-think time). The reason is that the extended logical unit of work
suspends the mirror transaction, which will hold various resources on the
CICS server. This may have a knock on the effect, and cause delays to
other users who are waiting for those same locks and resources.
60 Java Connectors for CICS

� 14 Finally, close the gateway, which closes the socket connection to the
gateway daemon.

Logical unit of work (LUW) IDs, and message qualifiers can only be used on the
same JavaGateway instance that created or assigned them. This is a security
feature. It stops different clients that are connected to the same CTG from
manipulating the LUW IDs of another application, or from using the message
qualifier to request its messages. For example, attempts to get a specific reply to
a message from a different JavaGateway will result in an ECI_ERR_NO_REPLY
return code.

Only one program link call per logical unit of work can be outstanding at any time.
An asynchronous program link call is outstanding until a reply solicitation call has
processed the reply. This means that you can not invoke programs concurrently
within the same LUW.

4.6 Tracing
Within the CTG class library, tracing is controlled by the com.ibm.ctg.client.T
class. Tracing is activated using the API calls in this class. All the methods in the
T class are static, so no instantiation is needed. The methods defined by the T
class are as follows:

setOn() The standard option for application tracing. By default, it
displays only the first 128-bytes of any data blocks (for
example, the COMMAREA, or network flows).

setDebugOn() The debugging option for application tracing. A boolean
supplied as an argument determines the effect. By
default, it traces out the whole of any data blocks. The
trace contains more information about the CICS
Transaction Gateway than the standard trace level. Calls
to setTruncationSize() and setDumpOffset() should be
made after the setDebugOn() call.

setStackOn() The exception stack option for application tracing. A
boolean supplied as an argument determines the effect. It
traces most Java exceptions, including exceptions that are
expected during normal operation of the CTG. No other
tracing is written.

setTimingOn() Specifies whether or not to display timestamps in the
trace. A boolean supplied as an argument determines the
effect. If on, timing information is appended to all
messages.
 Chapter 4. ECI and ESI applications 61

setfullDataDump() Specifies whether or not all the content for any data
blocks is to be traced. A boolean supplied as an
argument determines the effect. To determine
precise data tracing use setTruncationSize() and
setDumpOffset().

setTruncationSize() The integer value supplied as an argument specifies
the maximum size of any data blocks that will be
written in the trace. Any positive integer is valid. If
you specify a value of 0, then no data blocks will be
written in the trace.

setDumpOffset() The integer value supplied as an argument specifies
the offset from which displays of any data blocks will
start. If the offset is greater than the total length of
data to be displayed, an offset of 0 will be used.

setTFile() The value filename specifies a file location for writing
of trace output. This is as an alternative to the default
output on stderr. Long filenames must be
surrounded by quotation marks (for example: trace
output file.log).

Alternatively, tracing can be activated using Java system directives. The Java
directives are processed when this class is loaded. The relevant directives are
listed below. The first column represents the directive name and the possible
parameters, and the second the equivalent API call.

gateway.T = on|off setDebugOn()

gateway.T.stack = on|off setStackOn()

gateway.T.timing = on|off setTimingOn()

gateway.T.fullDataDump = on|off setfullDataDump()

gateway.T.setTruncationSize = integer setTruncationSize()

gateway.T.setDumpOffset = integerValue setDumpOffset()

gateway.T.setTFile = StringValue setTFile()

A simple code snippet illustrates the enabling of tracing as shown in Figure 4-14.

Figure 4-14 T class tracing

....
com.ibm.ctg.client.T.setOn(true);
com.ibm.ctg.client.T.setfullDataDumpOn(false);
....
62 Java Connectors for CICS

A sample trace snippet (using the T class) of an ECI call is shown in
Example 4-4.

Example 4-4 T class tracing output

16:28:58:197 : main: S-C: CCL6603I: # Dump: 51/51 bytes : Offset = 0 Outbound Flow
main: S-C: CCL6603I: # 00000: 47 61 74 65 00 40 00 00 00 00 00 05 00 00 00 00
Gate.@..........
main: S-C: CCL6603I: # 00016: 00 00 00 00 00 00 00 04 42 41 53 45 00 00 00 00
........BASE....
main: S-C: CCL6603I: # 00032: 12 00 02 65 6E 00 02 55 53 00 00 00 00 00 00 00
...en..US.......
main: S-C: CCL6603I: # 00048: 00 00 00 ...
16:28:58:257 :
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6602I: GatewayRequest type = BASE, flow version = 4194304, flow type = 5, Gateway return
code = 0, length of data following the header = 48.
Commarea in: ---------------------------
16:28:58:417 : main: S-C: CCL6720I: ECIRequest: Call_Type = ECI_SYNC, Server = SCSCPAA6,
Program = ECIPROG, Transid = CPMI, Extend_Mode = ECI_NO_EXTEND, Luw_Token = 0,
Message_Qualifier = 0, Callbackable = false.
16:28:58:477 : main: S-C: CCL6727I: ECIRequest: Commarea_Length = 27.
16:28:58:487 : main: S-C: CCL6603I: # Dump: 80/137 bytes : Offset = 0 Outbound Flow
main: S-C: CCL6603I: # 00000: 47 61 74 65 00 40 00 00 00 00 00 01 00 00 00 00
Gate.@..........
main: S-C: CCL6603I: # 00016: 00 00 00 00 00 00 00 03 45 43 49 00 00 00 00 69
........ECI....i
main: S-C: CCL6603I: # 00032: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
................
main: S-C: CCL6603I: # 00048: 00 53 43 53 43 50 41 41 36 00 00 00 00 00 00 00
.SCSCPAA6.......
main: S-C: CCL6603I: # 00064: 00 00 00 00 00 00 00 00 00 2A 2A 2A 2A 2A 2A 2A
.........*******
16:28:58:617 :
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6602I: GatewayRequest type = ECI, flow version = 4194304, flow type = 3, Gateway return code
= 0, length of data following the header = 52.
16:28:58:627 :
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6721I: ECIRequest: Call_Type = ECI_SYNC, Cics_Rc = ECI_NO_ERROR, Abend_Code = ,
Luw_Token = 0, Message_Qualifier = 0.
16:28:58:637 :
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6727I: ECIRequest: Commarea_Length = 27.
16:28:58:647 :
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6603I: # Dump: 27/27 bytes : Offset = 0 Inbound Commarea
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6603I: # 00000: E2 C3 E2 C3 D7 C1 C1 F6 40 F1 F7 61 F0 F1 61 F0 @..a..a.
 Chapter 4. ECI and ESI applications 63

LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6603I: # 00016: F2 40 F1 F9 7A F3 F1 7A F1 F3 40 .@..z..z..@
Commarea out: SCSCPAA6 17/01/02 19:31:13
Rc: 0
16:28:58:667 :
LL-Socket[addr=9.1.38.179,port=2006,localport=1818]com.ibm.ctg.client.TcpJavaGateway@314e: S-C:
CCL6602I: GatewayRequest type = BASE, flow version = 4194304, flow type = 4, Gateway return
code = 61444, length of data following the header = 0.

4.7 Exception handling
This section provides details on how to deal with error handling when using the
ECIRequest object, and how to build an exception handling framework for use
with the ECI.

When errors are encountered while making ECI calls, no exceptions are thrown.
Instead, it is up to you to check the return code in the Cics_Rc field in the
EciRequest object using the constants defined in the supplied ECIReturnCodes
interface. The getCicsRcString() method may also be used to translate the
Cics_Rc from an integer into the error code strings defined in the ECIReturnCodes
interface, which may be of more use in error messages than the integer Cics_Rc.

In addition to the return code, the Abend_code field may also provide useful
information in the form of the four character CICS abend code returned from the
called CICS server.

The only case when an exception will be generated, is when there is a network
problem communicating with the gateway daemon. In this case, a
java.io.IOException will be thrown.

4.7.1 ECI return codes
The most common ECI error codes are as follows:

ECI_ERR_CICS_DIED The specified server is no longer available.

ECI_ERR_MAX_SESSIONS There are not enough communication resources
to satisfy requests.

ECI_ERR_NO_CICS The CICS system is not available.

ECI_ERR_RESOURCE_SHORTAGE There are not enough resource to complete the
request (usually a communications problem with
SNA sessions or EXCI pipes).
64 Java Connectors for CICS

ECI_ERR_SECURITY_ERROR Either CICS rejected the request because the
user ID and password were not valid, or they
were missing.

ECI_ERR_TRANSACTION_ABEND The CICS transaction ended abnormally.

ECI_ERR_UNKNOWN_SERVER The requested server could not be located by
the CTG.

These and other error codes are defined as constants in ECIReturnCodes
interface, which should be used for any error determination.

4.7.2 ESI return codes
The ESI has a very similar structure for error handling as the ECIRequest class in
that the Cics_Rc field contains the return code, and the getCicsRcString() can
be used to translate the return code into a string. However, the Abend_code field is
not provided.

The most common ESI error codes are:

ESI_ERR_PASSWORD_EXPIRED The password has expired and needs to be
changed.

ESI_ERR_PASSWORD_INVALID The password is not valid for the given user
ID on the specified server.

ESI_ERR_PASSWORD_REJECTED The password was revoked by the CICS
administrator. The user ID must ask the
administrator to enable his account on the
specified server.

ESI_ERR_USERID_INVALID The user ID does not exist in the specified
server.

These error codes are defined as constants in ESIReturnCodes interface, which
should also be used for any error determination.
 Chapter 4. ECI and ESI applications 65

4.7.3 Implementing an exception handling framework
Based on our experience, you are encouraged to build a small exception
handling framework for your applications. Figure 4-15 through Figure 4-17 on
page 68 show a simple exception handling framework. It resembles the Java
event model, but for simplicity, it is limited to exception notification for one single
exception handler, because only one handler may be registered at each moment.
This limitation is not implicit in the interfaces provided in the framework, but in the
CICSECIExceptionNotifierImpl class implementation, and in the lack of some
other classes and interfaces that may be needed to remedy the limitation. Also,
the example framework shown does not handle all the exceptions.

Next, we define an exception handler interface, named
CICSECIExceptionHandler, shown in Figure 4-15. This interface should be
implemented by a specific error handling class, which should provide a method
for each error defined. The sample code provides a class called
CICSECIExceptionHandlerImpl with default message logging for each error
situation.

Figure 4-15 ECIRequest exception handling framework, part 1

And finally, we defined an exception notifier interface, named
CICSECIExceptionNotifier, shown in Figure 4-16. Any class interacting with the
CICS server should implement this interface, as these classes may obtain error
codes from CICS.

public interface CICSECIExceptionHandler {
void handleECI_ERR_CICS_DIED();
void handleECI_ERR_RESPONSE_TIMEOUT();
void handleECI_ERR_ROLLEDBACK();
void handleECI_ERR_SECURITY_ERROR();
void handleECI_ERR_TRANSACTION_ABEND();
....
void handleUnexpected();

}

Tip: If you think you need more information to handle your exceptions, you
may want to pass a class of your own, with the information that you require as
a parameter to each handler method.
66 Java Connectors for CICS

Figure 4-16 ECIRequest exception handling framework, part 2

Usually, the implementation code for notifiers in this event model is very similar (if
not the same) for all the notifiers. It is a good practice to provide developers with
an implementation class of the notifier interface.

In this case, your classes should still implement the notifier interface, and have
the implementation class as an aggregate. The methods inherited from the
implemented interface will work as wrappers for the aggregated class methods,
where the real code is.

In Figure 4-17 we show an example of an implementation class, named
CICSECIExceptionNotifierImpl, for the notifier interface
CICSECIExceptionNotifier.

public interface CICSECIExceptionNotifier {
void addExceptionHandler(CICSECIExceptionHandler eh);
boolean handleException(int errorCode);
void removeExceptionHandler(CICSECIExceptionHandler eh);

}

 Chapter 4. ECI and ESI applications 67

Figure 4-17 Exception handling framework, part 3

import com.ibm.ctg.client.*;

public class CICSECIExceptionNotifierImpl
 implements ECIReturnCodes, CICSECIExceptionNotifier {

 private CICSECIExceptionHandler exceptionHandler;

 public CICSECIExceptionNotifierImpl() {
 super();
 }
 public void addExceptionHandler(CICSECIExceptionHandler eh) {
 exceptionHandler = eh;
 }
public boolean handleException(int errorCode) {
 if (exceptionHandler != null) {
 switch (errorCode) {
 case ECI_ERR_CICS_DIED :
 {
 exceptionHandler.handleECI_ERR_CICS_DIED();
 break;
 }
 case ECI_ERR_ROLLEDBACK :
 {
 exceptionHandler.handleECI_ERR_ROLLEDBACK();
 break;
 }
 case ECI_ERR_TRANSACTION_ABEND :
 {
 exceptionHandler.handleECI_ERR_TRANSACTION_ABEND();
 break;
 }
 default :
 {
 exceptionHandler.handleUnexpected();
 break;
 }
 }
 }
 return errorCode != ECI_NO_ERROR;
}
 public void removeExceptionHandler(CICSECIExceptionHandler eh) {
 exceptionHandler = null;
 }
}

68 Java Connectors for CICS

Given that your class implements the CICSECIExceptionNotifier, the actual
exception handling framework should be invoked as shown in Figure 4-18.

Figure 4-18 Invoking the exception handling framework

public class ExceptionECI implements CICSECIExceptionNotifier {

private CICSECIExceptionNotifierImpl notifier = new CICSECIExceptionNotifierImpl();
private CICSECIExceptionHandler handler = new CICSECIExceptionHandlerImpl();

public void addExceptionHandler(CICSECIExceptionHandler eh) {
 notifier.addExceptionHandler(eh);
}
public void execute() {
 try {
 JavaGateway jg = new JavaGateway("tcp://gunner.almaden.ibm.com", 2006);
 byte commarea[] =("A--------------------------").getBytes("IBM037");
 ECIRequest req = new ECIRequest(ECIRequest.ECI_SYNC,
 "SCSCPAA6", //CICS server name
 null, null, //userid &password
 "ECIPROG", //program name
 "CPMI", //transaction ID
 commarea, commarea.length, //commarea data &length
 ECIRequest.ECI_NO_EXTEND, //extended mode
 ECIRequest.ECI_LUW_NEW); //LUW token
 System.out.println("Comm in:" + new String(req.Commarea, "IBM037"));
 jg.flow(req);

 addExceptionHandler(handler);
 if (handleException(req.getRc())) {
 System.out.println("CICS Error");
 } else {
 System.out.println("Comm out:" + new String(req.Commarea,"IBM037"));
 }
 jg.close();
 } catch (IOException ioe) {
 System.out.println("Handled exception:" + ioe.toString());
 }
}
public boolean handleException(int errorCode) {
 return notifier.handleException(errorCode);
}
public static void main(String[] args) {
 (new ExceptionECI()).execute();
}
public void removeExceptionHandler(CICSECIExceptionHandler eh) {
 notifier.removeExceptionHandler(eh);
}
}

 Chapter 4. ECI and ESI applications 69

The following classes are provided in the package itso.cics.eci, which is
offered with the sample code for this redbook.

CICSECIExceptionHandler Handler interface

CICSECIExceptionHandlerImpl Implementation of handler

CICSECIExceptionNotifier Notifier interface

CICSECIExceptionNotifierImpl Implementation of notifier

ExceptionECI Class invoking exception handling
framework
70 Java Connectors for CICS

Chapter 5. CCI applications: ECI based

This chapter describes how to develop non-managed applications that use the
ECI resource adapter. There are examples that introduce two ways to write these
applications; using the Common Client Interface (CCI) classes directly and using
the Enterprise Access Builder (EAB) provided by VisualAge for Java.

This chapter focuses on writing non-managed applications; that is, an application
server is not managing the connection to the resource adapter. It is recommend
that you first develop a non-managed application for simplicity before writing and
deploying to a managed environment. For more information on the managed
environment, see Chapter 6, “CCI applications in a managed environment” on
page 111.

The following information on how to develop a simple application is in this
chapter:

� Using the CCI
� Using the Enterprise Access Builder
� Asynchronous calls
� Extended logical units of work
� Exception handling

All the sample code for this chapter is available in the package itso.cics.j2ee.

5

© Copyright IBM Corp. 2002 71

5.1 Using the CCI
The Common Client Interface (CCI) defines an application programming
interface (API) for resource adapters connecting to Enterprise Information
Systems (EIS). This section focuses on using this interface directly. Alternative
tooling, such as VisualAge for Java, can generate CCI code. This is discussed in
5.2, “Using the Enterprise Access Builder” on page 79.

The CICS ECI resource adapter class diagram (Figure 5-1) shows the
interactions between the different J2EE Connector Architecture classes used to
execute a transaction, and their relationship to the CCI. The class names in bold
are those used in an ECI program call. The methods used to drive an interaction
are inherited by these classes from the interfaces provided by the CCI.

Figure 5-1 CICS ECI resource adapter class diagram

Managed ConnectionFactory

createConnectionFactory()

ConnectionFactory

getConnection()
getRecordFactory()

Connection

createInteraction()
getLocalTransaction()

getMetaData()
getResultSetInfo()

close()

Interaction

close()
getConnection()

execute()
getWarnings()

Record

InteractionSpec

SYNC_SEND
SYNC_RECEIVE

SYNC_SEND_RECEIVE

CCI

ECIManagedConnectionFactory

ECIConnectionFactory

ECIConnection

CICSConnectionFactory

CICSConnection

CICSIinteraction

ECIInteractionSpec
setCommareaLength()
setReplyLength()
setFunctionName()
setInteractionVerb()
setTimeOut()

CICSManagerConnectionFactory
setConnectionURL()
setPortNumber()
setServerName()
setUserName()
setPassword()

ECIInteraction

execute()
<<parameter>>

 execute()
<<parameter>>

createInternational()
 <<creates>>

getConnectionl()
 <<creates>>

createConnectionFactory()
 <<creates>>
72 Java Connectors for CICS

5.1.1 Writing a simple CCI application
This section describes how to write a simple Java CCI program that calls a CICS
COMMAREA based program, passing a Java Record as input and output. The
tasks the program performs are illustrated in Figure 5-2. The class EciprogTest
in the package itso.cics.eci.j2ee is a completed solution of our program. To
obtain it refer to “Additional material” on page 261.

Figure 5-2 CTG scenario for ECI CCI application

Import statements
Our programs uses classes from these three Java packages:

javax.resource.cci A collection of CCI interfaces, described in the
J2EE Connector Architecture specification.

com.ibm.connector2.cics Classes specific to the CICS resource adapters,
which implement the CCI interfaces

java.io The UnsupportedEncodingException class,
which may be thrown when performing data
conversion.

To use classes from these packages, you must either explicitly reference their
package names in the code, or (more conveniently) use an import statement.
The import statements shown below were used:

import com.ibm.connector2.cics.ECIManagedConnectionFactory;
import com.ibm.connector2.cics.ECIInteractionSpec;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Connection;
import javax.resource.cci.Interaction;
import javax.resource.ResourceException;
import java.io.UnsupportedEncodingException;

OS/390

CICS TS V1.3
 Region

 ECIPROG
 program

SCSCPAA6
Create Connection
Create InteractionSpec
Create Record
Flow request
Examine the Record
Close the connection

Windows client

Java CCI
application

C
O
M
M
A
R
E
A

Client
daemon

Gateway
daemon

Port
 2006

CTG V4.0.1

Windows NT
gunner
 Chapter 5. CCI applications: ECI based 73

Connecting to CICS
Our EciprogTest class calls the CICS program ECIPROG on the CICS server,
SCSCPAA6, using the facilities of a CTG running on the host gunner, listening on
port 2006. This code is shown in Figure 5-3, and is available as a sample class.

Figure 5-3 ECI CCI example EciprogTest

The logic in this code is as follows:

� 1 Instantiate the ECIManagedConnectionFactory class and configure the
object.

In the example, this class is directly instantiated. This class configures the
main attributes of the non-managed connection between the Java code and
the CICS Transaction Gateway, such as:

– 2 The URL for the gateway daemon, through setConnectionURL()

try {
//Create and set values for ECI managed connection factory

1 ECIManagedConnectionFactory mcf= new ECIManagedConnectionFactory();
2 mcf.setConnectionURL("tcp://gunner");
3 mcf.setPortNumber("2006");
4 mcf.setServerName("SCSCPAA6");

//Create a connection factory connection object
5 ConnectionFactory cxnf=(ConnectionFactory)mcf.createConnectionFactory();
6 Connection cxn= cxnf.getConnection();

//create an interaction with CICS to start program ECIPROG
7 Interaction ixn= cxn.createInteraction();
8 ECIInteractionSpec ixnSpec= new ECIInteractionSpec();
9 ixnSpec.setInteractionVerb(ixnSpec.SYNC_SEND_RECEIVE);
10 ixnSpec.setFunctionName("ECIPROG");

//Create a new record for handling the COMMAREA byte array
11 GenericRecord record = new

GenericRecord(("---------------------------").getBytes("IBM037"));
System.out.println("Comm in: "+new String(record.getCommarea(),"IBM037"));

//Finally execute and flow the request to CICS
12 ixn.execute(ixnSpec, record, record);

//Close the interaction and the connection
13 ixn.close();

cxn.close();
System.out.println("Comm out: "+new String(record.getCommarea(),"IBM037"));

}catch (ResourceException re) { System.out.println("Error: "+re.getMessage()); }
}catch (IOException ioe) { System.out.println();}
74 Java Connectors for CICS

– 3 The port number where the gateway daemon is listening, through
setPortNumber()

– 4 The CICS server name (as known to the CTG) through setServerName()

– The security attributes, through setUserName() and setPassword()

� 5 Instantiate the javax.resource.cci.ConnectionFactory object

Use the ECIManagedConnectionFactory object that you already created to
instantiate a class implementing the ConnectionFactory interface. To do so,
invoke the method createConnectionFactory() on the
ECIManagedConnectionFactory object.

� 6 Instantiate the javax.resource.cci.Connection class.

Invoke the getConnection() method on your ConnectionFactory object to
obtain an instance of Connection, configured as stated by the configuration
of your CICSManagedConnectionFactory.

� 7 Instantiate the javax.resource.cci.Interaction object.

Create an Interaction object by invoking createInteraction() on your
Connection object. The Connection object is responsible for the creation of
the Interaction object, which will execute interactions with the CICS server.

� 8 Instantiate and configure the specific object for the kind of interaction that is
required.

In this case, use the com.ibm.connector2.cics.ECIInteractionSpec class.
This class implements the javax.resource.cci.InteractionSpec interface. It
is used for the configuration of the specific interaction to be executed. This
configuration is performed by invoking its setter methods in order to populate
the attributes of the object as follows:

Security: The user ID and password specified using setUserName()
and setPassword() are flowed with each ECI request.

If using the OS/390 CTG, these can be verified within the CTG itself,
and only the user ID is flowed on to CICS. If using a distributed CTG,
both the user ID and password are flowed with each ECI request into
CICS, and they are verified within CICS for each ECI request.

Important: The J2EE Connector Architecture states that the
ConnectionFactory object should be retrieved by making a JNDI lookup,
rather than explicitly creating it in the code. JNDI is not used here for
simplicity. For information on how to incorporate JNDI to lookup a
ConnectionFactory object, see 5.5, “Using JNDI” on page 100.
 Chapter 5. CCI applications: ECI based 75

– 9 The type of the interaction, whether it is synchronous or asynchronous,
through the setInteractionVerb() method

– 10 The name of the program to be run on the CICS server, through the
setFunctionName() method

� 11 Instantiate the object implementing the javax.resource.cci.Record and
javax.resource.cci.Streamable interfaces.

Create your our own GenericRecord class, which implements the Record and
Streamable interfaces. Record is an empty interface; it has no methods to
implement. The Streamable interface provides several methods, the most
important ones being: read(InputStream) and write(OutputStream).

public class GenericRecord
implements javax.resource.cci.Streamable,
javax.resource.cci.Record {

}

The tasks that this GenericRecord must perform are:

– Provide a byte array to hold the CICS COMMAREA. Declare a byte array
for this purpose as follows:

private byte commarea[]=null;

– Provide a method to write data into the data structure supporting the
COMMAREA storage.

Use the inherited method read() from the Streamable interface.

public void read(java.io.InputStream in) throws java.io.IOException {
commarea[]=null byte[in.available()];
in.read(commarea);

}

– Provide a method for the CCI to read the COMMAREA data from the
Record, and to flow it in the ECIInteractionSpec object. Use the inherited
method write() from the Streamable interface for this:

public void write(java.io.OutputStream out) throws
java.io.IOException {

out.write(commarea);
out.flush();

}

Tip: When supplying data to the Record, (from the Record’s
point-of-view) the Record is reading the data. To provide the Record
with data, you should invoke its read() method, so that the Record is
able to get the data from the InputStream you will supply it with.
76 Java Connectors for CICS

For simplicity, create a constructor, and a getter and setter to work with the
commarea field as a byte array, and not as an InputStream or
OutputStream.

public GenericRecord(byte[] comm) {
setCommarea(comm);
}

public void setCommarea(byte[] comm) {
try {

read(new java.io.ByteArrayInputStream(comm));
}catch (java.io.IOException ioe) {
}

}
public byte[] getCommarea() {

return commarea;
}

Use a clone() method, as this method also is defined in the
javax.resource.cci.Record interface.

public Object clone() throws CloneNotSupportedException{
 return super.clone();
}

When supplying the byte array to the GenericRecord constructor, use the
EBCDIC code page (IBM037), in order to convert data from the Unicode
string to an EBCDIC byte array expected by CICS on S/390.

� 12 Execute the transaction.

The execute() method invoked on the Interaction object opens the
actual TCP/IP socket connection to the gateway daemon, and causes the
ECI request to be flowed to CICS. Three parameters must be supplied to
the execute() method as follows:

Tip: Note that in our example, we pass the constructor a byte array of
length 27 containing contain ’-’ chars. Actually, ECIPROG does not
require any input, so this input COMMAREA is just ignored. We only
supply this specific byte array to clarify the input.

Note: Instead of developing a custom GenericRecord, you can use the
EAB feature of VisualAge for Java to generate Records using the Import
COBOL to Record Type SmartGuide. This provides getters and setters
for accessing each Record within the COMMAREA, and built-in data
conversion for all numeric and character data types. For further details
on how to use the EAB refer to 5.2.1, “Creating a Record out of a
COMMAREA” on page 79.
 Chapter 5. CCI applications: ECI based 77

• An InteractionSpec, created previously

• A Record object as both input and output

� 13 Finally, close both the Interaction and the Connection.

The close() method on the Connection object is the final flow, and in doing
so, closes the underlying TCP/IP socket connection to the gateway daemon. It
must be executed after the close() method on the Interaction.

The output for this sample code is shown in Example 5-1.

Example 5-1 EciProgTest output

Comm in: ---------------------------
Comm out: SCSCPAA6 13/12/01 22:13:11

5.1.2 Tracing
CCI tracing is set using the ECIManagedConnectionFactory object. Two steps
must be taken to enable tracing:

1. Turn logging on through the setLogWriter() method.
2. Specify the level of tracing using the setTraceLevel() method as shown:

ECIManagedConnectionFactory mcf = new ECIManagedConnectionFactory();
mcf.setLogWriter(new java.io.PrintWriter(System.out));
mcf.setTraceLevel(new Integer(mcf.RAS_TRACE_INTERNAL));

Valid levels of tracing are as follows, with each level of trace building upon the
previous level, therefore, ENTRY_EXIT includes everything in
ERROR_EXCEPTION, and INTERNAL includes all trace levels:

RAS_TRACE_OFF Disable all tracing
RAS_TRACE_ERROR_EXCEPTION Output exception trace stacks
RAS_TRACE_ENTRY_EXIT Output method entry and exit stack traces
RAS_TRACE_INTERNAL Output debug trace entries
.

Restriction: Notice that even though we are using the same Record
for input and output, we used the execute() method with a three
parameter signature since the CICS ECI resource adapter does not
support the two parameter execute() method.

Tip: We found that the CCI trace output was not particularly useful as it only
traced the execution of methods within the CCI itself. Therefore, we suggest
that you use the com.ibm.ctg.client.T class if you wish to debug your
application. For details on using the T class refer to 4.6, “Tracing” on page 61.
78 Java Connectors for CICS

5.2 Using the Enterprise Access Builder
The Enterprise Access Builder (EAB) is a tool provided by VisualAge for Java,
and is capable of automatically creating Record objects out of COMMAREA
definitions, and creating Command beans that encapsulate all the interaction
CICS. The EAB was originally built to use the Common Connector Framework
(CCF), but there is also support for the beta set of J2EE Connectors.

5.2.1 Creating a Record out of a COMMAREA
The most likely scenario when connecting to CICS is to call an existing CICS
program, passing a COMAREA as input and output. The COMMAREA is the
data interface for all ECI calls, and will often be a complex structure with many
different types of Records within it. The content of these Records will be what
determines the course of action to be taken by the called CICS program.

The EAB tool uses the Java Record Framework to import the COMMAREA as a
class implementing the javax.resource.cci.Record interface. This class
provides a series of getter and setter methods to access fields within the
COMMAREA, and can also be used to perform data conversion.

Figure 5-4 EAB Record generation

Attention: IBM has just released a new development toolkit, named
WebSphere Studio Application Developer Integration Edition. This provide for
integration of J2EE applications with Enterprise Information Systems, as well
as Web services. This supersedes the function provided by the EAB in
VisualAge for Java, and embeds the complete technology provided by
WebSphere Studio Application Developer. This new toolkit officially supports
the J2EE connectors, but does allow you to run your existing CCF connector
applications in the new environment. Tooling for modifying your CCF
application is supported only by the EAB. For further refer to the URL:

http://www.ibm.com/software/ad/studiointegration/

Note: For instructions on installing the EAB feature, and the J2EE connector
support in Visual Age for Java, refer to Appendix A, “Configuring the CICS
connectors in VisualAge for Java” on page 219.

COBOL
source

RecordType

Import COBOL to
Record Type
(SmartGuide)

Create Record from
 Record Type
(SmartGuide)

Record
 Chapter 5. CCI applications: ECI based 79

http://www.ibm.com/software/ad/studiointegration/

The COMMAREA declaration for our sample ECIPROG CICS application is
shown in Figure 5-5. (For the complete COBOL source refer to Appendix C.2,
“ECIPROG” on page 244).

Figure 5-5 COMMAREA for ECIPROG

ECIPROG is a sample that takes no input, and merely returns the CICS region
APPLID, and the date and the time in a 27 character string. Therefore, our EAB
generated Record class will provide getter and setter methods for each of the
fields: APPLID, FILLER-1, DATE-AREA, FILLER-2, TIME-AREA; and FILLER-3
(present in the original COMMAREA.)

You must import the COMMAREA into VisualAge for Java using the EAB tool.
You will need a project and a package for the class to reside in; both of them
must be open editions. In this book, the project CICS Connectors Redbook and a
package named itso.cics.eci.j2ee is used. Once you have a RecordType
class, process it to create the Record class responsible for the exchange of data
with the CICS server. The following steps are needed to create a RecordType:

1. This is the first step is to create the RecordType from the COBOL
COMMAREA:

a. In VisualAge for Java, select Workspace -> Tools -> Enterprise Access
Builder -> Import COBOL to Record Type. A SmartGuide will open to
guide you through the process, starting with the screen shown in
Figure 5-6.

 01 DFHCOMMAREA.
 03 APPLID PIC X(8).
 03 FILLER-1 PIC X(1) VALUE SPACE.
 03 DATE-AREA PIC X(8).
 03 FILLER-2 PIC X(1) VALUE SPACE.
 03 TIME-AREA PIC X(8).
 03 FILLER-3 PIC X(1) VALUE SPACE.

Restriction: The EAB tool only supports COBOL coded CICS programs. If
you wish to use it with PL/I, Assembler, or C CICS programs, you will need to
create a dummy COMMAREA structure in COBOL and use this with EAB, or
use the Record editor to build a Record from scratch.
80 Java Connectors for CICS

Figure 5-6 Import COBOL to Record Type, part 1

b. Provide the name of the COBOL file containing the COMMAREA
declaration. This example uses the file eciprog.txt. Select A CICS
Transaction as Code to be imported. Then click Next. The window in
Figure 5-7 will be displayed.

Figure 5-7 Import COBOL to Record Type, part 2
 Chapter 5. CCI applications: ECI based 81

c. The screen in Figure 5-7 shows the correct values by default, so nothing
needs to be changed. Nevertheless, the left pane should contain all
level-one data structures declared in the COBOL source code, and the
right pane has what you want to import into VisualAge for Java. By
selecting a data structure on the left and clicking on the left to right arrow
(>)button on top of the screen, you add data to be imported as a
RecordType. Select the checkbox Always import DFHCOMMAREA and
the SmartGuide will automatically import the COMMAREA declaration in
your COBOL files. When finished, click Next. The window on Figure 5-8 is
displayed.

Figure 5-8 Import COBOL to Record Type, part 3

d. Finally, specify the project and package where you want to create your
new Record type and name the RecordType: EciprogRecordType. Click
Finish. The new EciprogRecordType class will now be added to the
itso.cics.eci.j2ee package in your workspace, and the Create Record
from Record Type Smart Guide will be started (see Figure 5-9.)

Attention: Notice that all COMMAREA declarations in any COBOL
source code file have the same name: DFHCOMMAREA. This does not
mean that you should always import the COMMAREA declared as
DFHCOMMAREA, because in some COBOL programs the
COMMAREA appears as an unformatted field that later on will be
formatted into the proper data structure.
82 Java Connectors for CICS

Figure 5-9 Create Record from Record Type, part 1

e. You will see that the project and package text boxes are already filled in;
these can be changed as needed, but in this example create your Record
class in the same package as the RecordType class. Please complete the
following steps:

i. You must provide a name for your Record class. Name it
EciprogRecord.

ii. Select Access Method to Direct. This flattens a Record and puts all
fields, including nested ones, at the same access level.

iii. Select Record Style to Custom. This option generates offset
information into the code itself, rather than placing the offset
information outside the generated code. When the offset information is
placed outside the code, there is a lookup cost to find the offset
information each time a request for data is made.

iv. Select Shorten Names; this option creates names that are more
readable.

v. Select Create Primitive Type Arrays; this is a more efficient way for
accessing arrays with a primitive data type.
 Chapter 5. CCI applications: ECI based 83

vi. Be sure to select Generate as javax.resource.cci.Record interface,
as the interface for your Records. This is an interface required for your
Record to be J2EE compliant. When finished, click Next, and the
screen on Figure 5-10 appears.

Figure 5-10 Create Record from Record Type, part 2

f. Next, configure how data conversion is to be performed with the following
steps:

i. Change Floating Point Format to IBM.

ii. Change Remote Integer Endian and Endian to Big Endian.

iii. Set the Code Page to IBM037, or another EBCDIC code page suitable
for mainframe CICS.

iv. And finally, set the Machine Type to MVS.

v. This set of values provides the correct data conversion for most data
types. Click Finish to end.

Finally, if you take a look at your package, two new classes should have been
created: EciprogRecord and EciprogRecordBeanInfo. If you explore the methods
on the EciprogRecord class you will notice that it has setters and getters for the
fields that were declared in the COMMAREA.

The code in our previous EciprogTest example (Figure 5-3 on page 74) can now
be modified to use this new Record class as shown in Figure 5-11.

Tip: For further details on what all these data conversion
parameters really mean, refer to Appendix B, “Data conversion” on
page 227.
84 Java Connectors for CICS

Figure 5-11 ECI CCI using EAB Record

This sample code is provided in package itso.cics.eci.j2ee in classes:
EABEciProgTest, EciprogRecord, EciprogRecordBeaninfo and
EciprogRecordType.

The output from the running of EABEciProgTest is shown in Example 5-2.

Example 5-2 EABEciprogTest output

APPLID:SCSCPAA6
DATE: 03/12/01
TIME: 19:55:13

5.2.2 Creating a Command bean
The EAB is not only capable of abstracting data, but can also encapsulate all the
coding through the use a Command bean. A Command bean encapsulates all
the necessary coding of an ECI request, and allows a Java literate programmer
to swiftly and easily invoke a CICS program without having to understand the
interactions involved. This is achieved using the EAB Create Command
SmartGuide. In our case, our CCI code example (Figure 5-3 on page 74) can be
significantly reduced to a few lines by encapsulating that code in a Command
bean.

Before creating a Command bean, you need to provide the input and output
Records (which might be the same) for the interaction. These should have been
built previously using the EAB.

1. In VisualAge for Java, select Workspace -> Tools -> Enterprise Access
Builder -> Create Command. The Create Command SmartGuide shown in
Figure 5-12 will open to guide you through the process.

....
EciprogRecord record= new EciprogRecord();
record.setRawBytes(("---------------------------").getBytes("IBM037"));

//make the call to CICS
...

//examine the output record
System.out.println("APPLD: "+record.getApplid());
System.out.println("DATE: "+record.getDate__Area());
System.out.println("TIME: "+record.getTime__Area());
....
 Chapter 5. CCI applications: ECI based 85

Figure 5-12 Create Command 1

a. Select the CICS Connector Redbook project and the
itso.cics.eci.j2ee package as the place to create the new Command
bean. Name the Command bean EciprogCommand.

b. Select the com.ibm.ivj.eab.command.ConnectionFactoryConfiguration
class in the Connection information text box (click the Browse button for
this task). This class will be used to configure the connection to the CICS
server.

c. Select the com.ibm.connector2.cics.ECIInteractionSpec class in the
InteractionSpec text box (click the Browse button for this task).

Attention: Do not set the Connection to CICSConnectionSpec, rather
use the ConnectionFactoryConfiguration class. Using the
CICSConnectionSpec will cause your Command bean to use the
CCF-based connector, and not the new J2EE connector.
86 Java Connectors for CICS

d. Select Next and the Add Input/Output Beans windows appears.

Figure 5-13 Create Command 2

2. In the Add Input/Output Beans window shown in Figure 5-13, the Implements
java.resource.cci.Record checkbox at the top appears checked, indicating
that you are building a J2EE Connector Architecture compliant Command
bean. Next, tell the SmartGuide the name of the Record to be used as input
for the ECI call. Use the EciprogRecord class that was previously created.

a. First, click the Browse button next to the text box labeled Class name and
select the itso.cics.eci.j2ee.EciprogRecord class.

b. Since you are using the same Record for input and output, select Use
input bean type as output bean type. The other possible choice is to
select Output record beans. This would be used when the COMMAREA
returned by the CICS program is different to the input COMMAREA.

c. When finished click Finish, which invokes the EAB Command Editor as
shown in Figure 5-14.
 Chapter 5. CCI applications: ECI based 87

Figure 5-14 EAB Command Editor 1

3. At this stage, the Command bean has been generated. Now, set the correct
properties on the Command bean. First you need to set the connection
factory fields:

– Highlight Connector in the top left pane, then select
com.ibm.ivj.eab.command.ConnectionFactoryConfiguration in the
top right frame. This will display properties and values relevant to the
connection to CICS.

– Select the null value for the managedConnectionFactory property. This
presents a pull-down menu of valid managed connection factories. Select
ECIManagedConnectionFactory.

– To the left of the managedConnectionFactory property click on + to expand
this property. Numerous sub-properties of managedConnectionFactory
are displayed. Set the following:
88 Java Connectors for CICS

• Set the connectionURL to point to the gateway daemon. We used
tcp://gunner for our CTG. If the protocol is omitted, tcp is assumed.

• Note the portNumber is by default 2006. This has not been changed.

• Change the serverName to the CICS server name where ECIPROG
will run. We used SCSCPAA6.

4. Now, set the InteractionSpec properties. To do this click on
com.ibm.connector2.cics.ECIInteractionSpec in the top right pane. We
wanted to call the program ECIPROG, so we set the functionName property to
ECIPROG (Figure 5-15).

Figure 5-15 EAB Command Editor 2

5. It is necessary to expose any Record fields that you wish the user of the
Command bean to be able to have access to, or set. To expose the applid,
date_Area, and time_Area output Record fields do as follows:

– Highlight Output in the top left pane, then highlight
itso.cics.eci.j2ee.EciprogRecord in the top right pane.

Important: The J2EE Connector Architecture states that the
ConnectionFactory object should be retrieved by making a JNDI
lookup, rather than explicitly creating it in the code. We did not use
the JNDI in our example for reasons of simplicity. For information on
how to utilize the JNDI to perform the lookup of the
ConnectionFactory object, refer to 5.5, “Using JNDI” on page 100.
 Chapter 5. CCI applications: ECI based 89

– Right click on the applid property and select Promote Property. This
adds a green dot next to applid to indicate that a getter and setter method
will be generated for it.

– Promote date_Area and time_Area using the same method.

6. The Command bean is now complete. To save the values set using this editor
select Command -> Save.

Now, lets take a look at package itso.cics.eci.j2ee in project CICS
Connectors Redbook. You should now discover two new classes: EciprogCommand
and EciprogCommandBeanInfo. It is a simple matter to create an application to
invoke the EciprogCommand bean, and retrieve the data from EciprogRecord.
This application is shown in Figure 5-23 on page 98.

Figure 5-16 Using a Command bean

The promoted fields of the output Record can be accessed individually through
automatically generated setters and getters in the Command bean, and no data
conversion is required.

You will find this code as the sample class CommandBeanTest in the package
itso.cics.eci.j2ee in the sample code supplied with this book. The output of
this test application will be the same as shown in the EABEciprogTest in
Example 5-2 on page 85.

....
try {

//Create the command and execute it
EciprogCommand command = new EciprogCommand();
command.execute();

//Get the results from the getters in the Record
System.out.println("APPLID:" + command.getApplid());
System.out.println("DATE: " + command.getDate__Area());
System.out.println("TIME: " + command.getTime__Area());

} catch (Exception e) {
System.out.println(e);

}....
90 Java Connectors for CICS

5.2.3 Migrating a CCF application
CCF compliant Records and commands can be migrated to the J2EE Connector
Architecture using an EAB SmartGuide. Before migrating any classes, it is
recommended that you version them first in VisualAge for Java.

The command migrator performs the following actions:

� Changes the connection information (if any was supplied) from using the
CCF-based CICSConnectionSpec class, to the J2EE Connector Architecture
based ConnectionFactoryConfiguration class.

� Changes the interaction spec from the CCF-based ECIInteractionSpec
class, to the J2EE Connector Architecture based ECIInteractionSpec class.

The Record migrator performs the following actions:

� Modifies the class to implement the javax.resource.cci.Record and
javax.resource.cci.Streamable interfaces.

� Implements the methods that these interfaces provide.

To migrate a command, right click on it and select Tools -> Enterprise Access
Builder -> Migrate Commands. The Migrate to Connector Architecture
SmartGuide will appear. You can optionally add additional commands to migrate
here. Click Finish to start the migration. If the command contains connection
information, the window shown in Figure 5-17 will appear.

Figure 5-17 Migrating a command

Select ECIManagedConnectionFactory.

The following CICSConnectionSpec properties cannot be migrated:

� reapTime
� realm
� unusedTimeout
� maxConnections
� minConnections
� connectionTimeout
 Chapter 5. CCI applications: ECI based 91

If any of these properties have been set, a warning will be issued during the
migration. The VisualAge for Java log will list all populated properties omitted
from the migration.

Once the command migration is complete, you will be asked if you wish to
migrate all associated input and output Records. You should answer Yes to this,
otherwise, using CCF-based Records in a migrated Command bean will cause
java.lang.ClassCastException to be thrown at runtime.

5.3 Asynchronous calls
The support for asynchronous calls is built into the CICS ECI resource adapter.
This allows your Java application to call a CICS program without blocking, while
waiting for the return of a response from CICS.

However, asynchronous calls using the CICS ECI resource adapter also have
their limitations. You cannot make several concurrent calls, and then wait for the
response. You must take the response of each previous call, before making
another call. This applies to all the calls made on the same CTG connection.

The code shown in Figure 5-18 is an extension of our earlier application
EciprogTest in Figure 5-3 on page 74. It shows the changes require to make a
single asynchronous call, and is described in the following text.

Restriction: We found during testing that the OS/390 CTG does not support
asynchronous ECI calls when using the CCI. In this situation, the error
CTG9631E, ECI_ERR_INVALID_CALL_TYPE is returned. This restriction
should be removed in a subsequent release of the CTG. This restriction does
not apply if the CTG is running on other platforms, and does not apply if using
asynchronous calls with the ECIRequest class.
92 Java Connectors for CICS

Figure 5-18 Sample code for synchronous calls

� 1 Notice that the interaction verb has changed from the previous Figure 5-3
on page 74. Now, instead of a SYNC_SEND_RECEIVE (send-and-wait for the
response) use SYNC_SEND (send-without-waiting).

� 2 Now the calling of the ECIPROG program has changed from one method to
two methods (line 2 send, and line 5 receive). Execute the first interaction with
a SYNC_SEND interaction verb.

� 3 Configure the next interaction to be a SYNC_RECEIVE in order to receive the
asynchronous response from the CTG.

Interaction ixn= cxn.createInteraction();
ECIInteractionSpec ixnSpec= new ECIInteractionSpec();

//Configure the first parameter
1 ixnSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND);

ixnSpec.setFunctionName("ECIPROG");
//...a Record, the second parameter
EciprogRecord record= new EciprogRecord();

//And finally execute!
2 ixn.execute(ixnSpec, record, null);

//Now prepare to get the response for the server
3 ixnSpec.setInteractionVerb(ixnSpec.SYNC_RECEIVE);
4 ixnSpec.setCommareaLength(record.getSize());
5 ixn.execute(ixnSpec, null, record);

//Close both the interaction and the conection
ixn.close();
cxn.close();

System.out.println("APPLID:" + record.getApplid());
System.out.println("DATE: " + record.getDate__Area());
System.out.println("TIME: " + record.getTime__Area());

Attention: This sample is incomplete since only the code required to
implement asynchronous calls is shown. It is meant to supersede the example
in Figure 5-11 on page 85.

This sample does not use any data conversion, so no IOException may be
thrown. Therefore, you would need to remove the catch statement for this
exception from the previous example. Also, do not forget to specify the same
import statements that were used previously.
 Chapter 5. CCI applications: ECI based 93

� 4 Notice that you are telling the InteractionSpec object about the size of the
COMMAREA (which is the size of the Record). Otherwise, you will get an
exception.

� 5 Finally, execute the receive, and look at the response on the Record
instance.

Sample code is provided in package itso.cics.eci.j2ee in the class
AsyncEciJca. The output for this example is the same as that in Example 5-2 on
page 85.

Figure 5-19 shows the code for making concurrent calls. Notice that in this code
each call is placed on its own Connection object.

Figure 5-19 Sample code for concurrent calls

...
Connection cxnA= cxnf.getConnection();
Connection cxnB= cxnf.getConnection();
Interaction ixnA= cxnA.createInteraction();
Interaction ixnB= cxnB.createInteraction();

ECIInteractionSpec ixnSpec= new ECIInteractionSpec();
ixnSpec.setInteractionVerb(ixnSpec.SYNC_SEND);
ixnSpec.setFunctionName("ECIPROG");
EciprogRecord record= new EciprogRecord();
//And finally execute!
ixnA.execute(ixnSpec, record, null);

//place another call
ixnB.execute(ixnSpec, record, null);

ixnSpec.setInteractionVerb(ixnSpec.SYNC_RECEIVE);
ixnSpec.setCommareaLength(record.getSize());
ixnA.execute(ixnSpec, null, record);
System.out.println("APPLID1:" + record.getApplid());
System.out.println("DATE1: " + record.getDate__Area());
System.out.println("TIME1: " + record.getTime__Area());

ixnB.execute(ixnSpec, null, record);
System.out.println("APPLID2:" + record.getApplid());
System.out.println("DATE2: " + record.getDate__Area());
System.out.println("TIME2: " + record.getTime__Area());

ixnA.close();
ixnB.close();
cxnA.close();
cxnB.close();
94 Java Connectors for CICS

This code is provided in the package itso.cics.eci.j2ee in the class
AsyncEciJcaMultiple. The output for this sample code is shown in Example 5-3
on page 95.

Example 5-3 AsyncEciJcaMultiple output

APPLID1:SCSCPAA6
DATE1: 14/12/01
TIME1: 12:56:10
APPLID2:SCSCPAA6
DATE2: 14/12/01
TIME2: 12:56:10

5.4 Extended logical units of work
Before considering how to extend logical units of work (LUWs), you should first
know what one is. In CICS terms, a logical unit of work (also termed a unit of
work) is a recoverable sequence of operations within a transaction. The start and
end of which are marked by synchronization points, where the LUW is either
committed, or rolled-back. If there are no explicit synchronization points within a
transaction, then the start and end of the transaction are considered implicit
synchronization points.

To illustrate the concept, imagine a bank transaction that consists of debiting
money from one account, and crediting it to another. If you debit the money from
one account, but the credit process fails, the data falls into an inconsistent state
where the money was lost. So, the action of subtracting from one account and
adding the same amount to another account, needs to be carried out as one
atomic operation, or as a logical unit of work.

If this operation was being performed by a series of ECI calls, you would need to
extend the LUW created by the first program, so that the second ECI call was
executed within the scope of the logical unit of work that was created by the first
ECI call. This is achieved within CICS by causing the mirror program that
executes ECI requests to remain active, after an ECI request has terminated.
(The mirror program usually terminates at the end of each ECI request.) The
mirror program only terminates when a request is received to end the LUW.

The sample application ECIADDER
This section utilizes a sample COBOL application called ECIADDER. The input
and output COMMAREAs are shown in Figure 5-20 and Figure 5-21.
 Chapter 5. CCI applications: ECI based 95

Figure 5-20 ECIADDER output COMMAREA

Figure 5-21 ECIADDER input COMMAREA

The code for these COBOL structures is shown below, and the full COBOL
source code for the application can be found in Appendix C.1, “ECIADDER” on
page 242. It is also shipped as a sample with this redbook.

01 COMMAREA-RETURN.
 03 DATA-OUT PIC S9(3) DISPLAY SIGN IS
 LEADING SEPARATE CHARACTER.
 03 Q-RC PIC ZZZ9 DISPLAY.
 03 FILLER-1 PIC X(4) VALUE SPACE.

 LINKAGE SECTION.
 01 DFHCOMMAREA.
 03 DATA-IN PIC S9(3) DISPLAY SIGN IS
 LEADING SEPARATE CHARACTER.
 03 QNAME PIC X(8).

This COMMAREA is character-based and takes as input an integer value
(DATA-IN) and a temporary storage queue name (QNAME). It adds the integer to
the value already stored in the queue, and then returns the result (DATA-OUT)
along with a return code (Q-RC).

You can subsequently call ECIADDER to see how the value of the queue
increases (or decreases, if provided with negative integers) at each call. If you
call ECIADDER (as you have learned from 5.1.1, “Writing a simple CCI
application” on page 73) you will be executing single LUWs. Now, we will show
how to make several calls on ECIADDER, to see how the value on the queue has
increased, and finally, to undo the changes on the queue in order to bring it back
to its first state, or commit the changes.

DATA-OUT Q-RC FILLER-1

3 bytes 4 bytes 4 bytes

DATA-IN QNAME

3 bytes 8 bytes
96 Java Connectors for CICS

The extension of the LUW is performed using a LocalTransaction object
obtained from the Connection object by invoking the getLocalTransaction()
method. Once you have obtained the LocalTransaction instance, any interaction
executed after the invocation of begin() will be part of the same LUW, and ends
upon execution of a commit() or rollback() invoked on LocalTransaction. The
Java code that calls ECIADDER is shown in Figure 5-22 and Figure 5-23. Notice
that the code is not complete, because it is quite similar to that in Figure 5-3 on
page 74. The complete code can be found in the sample class XluwTest in
package itso.cics.eci.j2ee supplied with this book.

Figure 5-22 Extended calls to ECIADDER, part 1

try{
......
ECIInteractionSpec ixnSpec= new ECIInteractionSpec();
ixnSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
ixnSpec.setFunctionName("ECIADDER");
XLUWInputRecord input= new XLUWInputRecord();
XLUWOutputRecord output=new XLUWOutputRecord();

input.setData__In((short)0);
input.setQname("RADDINGQ");

1 ixn.execute(ixnSpec, input, output);
2 System.out.println("Queue starting value: "+output.getData__Out());

3 cxn.getLocalTransaction().begin();
input.setQname("RADDINGQ");
input.setData__In(10);

4 ixn.execute(ixnSpec, input, output);
System.out.println("Queue after adding 10: " + output.getData__Out());
 Chapter 5. CCI applications: ECI based 97

Figure 5-23 Extended calls to ECIADDER, part 2

To test this program, you must require the ECIADDER COBOL program to be
deployed on your CICS server. Once the ECIADDER program is ready to run,
import the COMMAREA, declared as DFHCOMMAREA in the COBOL source,
and the COMMAREA-RETURN, into VisualAge for Java as different Records.
Name them XLUWInputRecord and XLUWOutputRecord respectively.

5 cxn.getLocalTransaction().rollback();

input.setData__In((short)0);
input.setQname("RADDINGQ");

6 ixn.execute(ixnSpec, input, output);
System.out.println("Queue after rollback: " + output.getData__Out());

7 cxn.getLocalTransaction().begin();

input.setQname("RADDINGQ");
input.setData__In((short)10);

8 ixn.execute(ixnSpec, input, output);
input.setQname("RADDINGQ");
input.setData__In((short)-7);

9 ixn.execute(ixnSpec, input, output);

10 cxn.getLocalTransaction().commit();

System.out.println("Queue after adding (10-7):"+output.getData__Out());
...
}catch(ResourceException re){

....
}

Note: The DFHCOMMAREA is the only interface between the CICS program and
the rest of the world. So, why import two different Records?

Although the DFHCOMMAREA structure is the only interface for input and
output, it is often convenient to have another structure (such as our
COMMAREA-RETURN) that is the same size as the DFHCOMMAREA, but contains
different fields that represent the returned data. This structure is then moved
over the original COMMAREA before the program returns.
98 Java Connectors for CICS

Now, let us take a deeper look at the sample code.

� 1 First of all invoke ECIADDER as usual with an input value of 0, so that you
do not actually modify the value in the CICS temporary storage queue named
RADDINGQ. As any call to ECIADDER returns the value in the queue, what
you are really doing is just reading the queue.

� 2 This line will print the actual value stored in the queue. Assuming the value
of the queue is zero, the result will be:

Queue starting value: 0

� 3 Now, go to the LocalTransaction, and invoke the begin() method to create
an extended logical unit of work.

� 4 Now call ECIADDER with the value +10, so the result will be:

Queue after adding 10: 10

� 5 Now, invoke the rollback() method on the LocalTransaction instance. This
will undo all the changes since the invocation of the begin() method.

� 6 Now, execute ECIADDER with the value 0 in order to read the queue after
the rollback. The output will be:

Queue after rollback: 0

� 7 Begin a new transactional unit of work.

� 8,9 Within the same logical unit of work, you will now call ECIADDER twice,
once with the value +10, and once with the value -7. The output will now be:

Queue after adding (10-7): 3

� 10 Confirm the changes made on the queue, and close the logical unit of work
by invoking the commit() method. Now, you cannot undo the changes, and
the value 3 remains in the queue.

Attention: Note that it is important to reset the queue name before every
execute() method invocation, since the previous invocation of this method
clears the value.
 Chapter 5. CCI applications: ECI based 99

5.5 Using JNDI
When deploying J2EE applications in a non-managed environment, there are two
ways to obtain a ConnectionFactory object:

� Manually create a ConnectionFactory object:

– Instantiate a ManagedConnectionFactory object.

– Populate the ManagedConnectionFactory object with deployment values.

– Use the ManagedConnectionFactory createConnectionFactory() method
to create a ConnectionFactory object.

� Use the JNDI to lookup a ConnectionFactory object, which has been created
earlier following the same steps as above, then bound into the JNDI
namespace.

The J2EE Connector Architecture specification indicates that all applications
deployed to a non-managed environment must use the JNDI to obtain a
ConnectionFactory object. There are two reasons for this:

� Applications deployed to a managed environment use the JNDI to lookup a
ConnectionFactory object. If applications are coded to perform this JNDI
lookup, it makes moving applications between managed and non-managed
environments easier.

� ConnectionFactory objects contain deployment values (such as the
connectionURL of the resource adapter) which may frequently change.
Without using JNDI, any changes to these deployment values means having
to change the Java application that uses them. If JNDI is used, a new
ConnectionFactory object can be bound to the JNDI namespace with the new
deployment values, and the application that uses them remains unchanged.

The examples used in this section are based on creating a ConnectionFactory
object for use with the CICS ECI resource adapter. They are all part of the
itso.cics.eci.j2ee.jndi package supplied with this book. For instruction on
obtaining the sample code, see Appendix D, “Additional material” on page 261.

Tip: We do not recommend using JNDI in a non-managed test
environment for applications that will ultimately be deployed to a managed
environment. Binding ConnectionFactory objects into a non-managed
environment is a time consuming exercise, and adds unnecessary
complexity. In contrast, the WebSphere Application Server V4 managed
environment automates the process of binding ConnectionFactory objects
to a JNDI namespace. However, if you are considering using a
non-managed environment in production, rather than in a test, then we
recommend that you do use JNDI.
100 Java Connectors for CICS

5.5.1 Using JNDI with the CCI
There are two steps to utilize the JNDI to obtain a ConnectionFactory object:

1. Create and bind a ConnectionFactory object to the JNDI namespace.
2. Lookup the ConnectionFactory object in the Java application.

Create and bind a ConnectionFactory object
For simplicity, these instructions are referred to publishing a ConnectionFactory
object in the JNDI namespace, and performing a lookup to retrieve that object. In
practice, a ConnectionFactory object is stored in a javax.naming.Reference
object, and it is the Reference object that is bound into the JNDI namespace. The
Reference object contains both the ConnectionFactory object, and the
javax.naming.spi.ObjectFactory implementation, which defines how to extract
the ConnectionFactory object from the Reference when it is retrieved from the
JNDI namespace.

This section uses the WebSphere Application Server JNDI naming server, which
is supplied with the application server, and with WebSphere Studio Application
Developer as part of the WebSphere Test Environment.

To use the WebSphere JNDI naming server in a non-managed environment, the
following JAR files from the WebSphere\AppServer\lib directory are needed in
the CLASSPATH at runtime:

� iwsorb.jar
� jca.jar
� ns.jar
� ras.jar
� ujc.jar
� utils.jar
� websphere.jar

The class itso.cics.eci.j2ee.jndi.ConFacPublish contains sample code to
publish a ConnectionFactory object to the JNDI. It consists of two methods:
main() and getJNDIContext(). The getJNDIContext() method is shown in
Figure 5-24.

Further information: The whitepaper “Using J2EE Resource Adapters in
a Non-managed Environment” provides an in-depth discussion of using
JNDI with the CCI in a non-managed environment. It is available at the
following URL:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle
/0109_kelle.html
 Chapter 5. CCI applications: ECI based 101

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html

Figure 5-24 The getJNDIContext() method

The above code returns a Context object, which is used to make interactions with
the JNDI namespace. The initial context factory (1) is set for that of the
WebSphere JNDI naming server, and the provider URL (2) specifies how to
connect to the name server.

The main() method performs the following functions:

� Instantiates an ECIManagedConnectionFactory object and populates the fields
of this object with deployment values

� Uses the ECIManagedConnectionFactory createConnectionFactory() method
to create a ConnectionFactory object

� Instantiates a Reference object, specifying the ConnectionFactory object as a
byte array and the class name of the ObjectFactory implementation

� Uses the getJNDIContext() method to get the Context object and bind the
Reference object to the JNDI namespace, specifying a resource reference
name

Lookup a ConnectionFactory object
The class itso.cics.eci.j2ee.jndi.EciprogTestJNDI performs a JNDI lookup
to retrieve a ConnectionFactory object, and uses it to create a connection to the
CICS ECI resource adapter. The lookup portion of this code is shown in
Figure 5-25.

public static Context getJNDIContext() throws NamingException {
InitialContext ctx = null;
Properties p = new Properties();

1 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.websphere.naming.WsnInitialContextFactory");
2 p.put(Context.PROVIDER_URL, "iiop://localhost:900");

try {
ctx = new javax.naming.InitialContext(p);

} catch (NamingException ne) {
System.out.println("caught NamingException getting InitialContext");
ne.printStackTrace();
throw ne;

}
return ctx;
}

102 Java Connectors for CICS

Figure 5-25 Performing the JNDI lookup

The following list summarizes the logic in this example:

� 1 The getJNDIContext() method (shown in Figure 5-24) is used to create a
Context object.

� 2 The Context object is used to lookup the ConnectionFactory, using the
resource reference name (eis/gunner/SCSCPAA6) specified when the object
was bound. The class itso.cics.eci.j2ee.jndi.CFNamingHelper will be
used to retrieve the ConnectionFactory from the Reference.

5.5.2 Using JNDI with the EAB
There are two steps for incorporating JNDI to obtain a ConnectionFactory object:

1. Create and bind a ConnectionFactory object to the JNDI namespace.
2. Lookup the ConnectionFactory object in the EAB Command bean.

Create and bind a ConnectionFactory object
VisualAge for Java provides a servlet called JNDIDeployer to bind a
ConnectionFactory object into the JNDI namespace provided by the Persistent
Name Server portion in the WebSphere Test Environment. Follow the
instructions below to use this servlet.

� Add the IBM Enterprise Access Builder WebSphere Samples and IBM
WebSphere Test Environment projects to the workspace.

� In the IBM Enterprise Access Builder WebSphere Samples project, open the
com.ibm.ivj.eab.sample.ws.j2ee.servlet.LookupDeployerHelper class.
This class is used to both bind and lookup references in the namespace.

� Examine the createBinding() method of LookupDeployerHelper. This
method allows you to specify values for the ECIManagedConnectionFactory
(which is used to create a ConnectionFactory object) and the
DefaultConnectionPoolProperties, which is used to configure connection

ConnectionFactory connFac = null;
ConFacPublish cfp = new ConFacPublish();

try{
1 Context ctx = cfp.getJNDIContext();
2 connFac = (ConnectionFactory)ctx.lookup("eis/gunner/SCSCPAA6");
} catch (NamingException ne) {
ne.printStackTrace();
}

 Chapter 5. CCI applications: ECI based 103

pooling. Use the setter methods of these classes to set deployment values,
including:

– setServerName(), which sets the name of the CICS server to call
– setConnectionURL(), which specifies the connection URL of the CTG

Additionally, you can customize the resource reference name by modifying
the rebind() method of the ctx object. The supplied code sets this to
CICSECI_A.

Save the changes made to the LookupDeployerHelper class.

� Start the WebSphere Test Environment by selecting Workspace -> Tools ->
WebSphere Test Environment.

� In the list of servers, highlight Servlet Engine. Select Edit Class Path and
select Select All to select all projects; then select OK. Click the Start Servlet
Engine button, and wait for the servlet engine to start.

� In the list of servers, highlight Persistent Name Server. This will be the JNDI
server used. Ensure that the Database driver is set to jdbc.idbDriver, then
select Start Name Server.

� Once the servlet engine and name server have started, open a browser and
enter the URL:

http://localhost:8080/servlet/com.ibm.ivj.eab.sample.ws.j2ee.servlet.JNDIDe
ployer

This will attempt to bind a reference to the JNDI namespace. The servlet will
respond with the following message

“ConnectionFactory added to the JNDI context as: CICSECI_A “

This message will be displayed regardless of the success of the operation. To
determine the real outcome of this operation, check the servlet engine thread
in the VisualAge for Java console for messages:

– A stack trace indicates an exception was thrown and the operation was not
successful.

– A message similar to the one shown in Example 5-4 indicates that the
resource reference name was successfully bound to the namespace.

Example 5-4 Output from the JNDIDeployer servlet

Reference Class Name:
com.ibm.ivj.eab.sample.ws.j2ee.servlet.LookupDeployerHelper
Address Type: obj0
AddressContents: ffffffac ffffffed 0 5 73 72 0 33 63 6f 6d 2e 69 62 6d 2e 63 6f
6e 6e 65 63 74 6f 72 32 2e 63 69 63 73 2e ...
Address Type: obj1
AddressContents: ffffffac ffffffed 0 5 73 72 0 36 63 6f 6d 2e 69 62 6d 2e 63 6f
6e 6e 65 63 74 6f 72 32 2e 73 70 69 2e 44 ...
104 Java Connectors for CICS

5.5.3 Using JNDI with a Command bean
To use JNDI in a Command bean, perform the following steps:

� Edit the Command bean, by right clicking on it and selecting Tools ->
Enterprise Access Builder -> Edit Command. This opens the Command
Editor.

� Highlight Connector in the left pane, and ConnectionFactoryConfiguration in
the right pane. Set the following properties, as shown in Figure 5-26:

– Set contextFactoryName to com.ibm.ejs.ns.jndi.CNInitialContextFactory.

– Ensure managedConnectionFactory is set to null. You do not need a
ManagedConnectionFactory object because we are retrieving a
ConnectionFactory object from the JNDI namespace.

– Set res_ref_name to CICSECI_A (or the value you set the resource
reference name to be in the LookupDeployerHelper class).

– Set res_type to com.ibm.connection2.cics.ECIConnectionFactory.

Figure 5-26 JNDI properties in the Command Editor

� Save the Command bean. It is now configured to use JNDI to lookup a
ConnectionFactory object.

An example of a Command bean that uses JNDI, and a client that uses this
Command bean, is included with this book in the classes EciProgCommandJNDI
and CommandBeanTestJNDI in the package itso.cics.eci.j2ee.jndi.
 Chapter 5. CCI applications: ECI based 105

5.6 Exception handling
This section analyzes the CICS resource adapter return codes and describes
their possible causes. All the exceptions generated when using the ECI extend to
the javax.resource.ResourceException class, but it is often desirable to catch
the specific subclass of an exception, and use this to determine the specific error
situation. Figure 5-27 shows the hierarchy of the supplied ResourceException
subclasses.

Figure 5-27 Hierarchy of the ECI CCI exception classes

Further details on these exception classes can be found in the J2EE connector
specification available for download at:

http://java.sun.com/j2ee/download.html#connectorspec

Table 5-1 shows how these exceptions map to the CICS ECI return codes.

LocalTransactionException

 EISSystemException

IllegalS tateException

CICSTxnAbendException

CommException

SecurityException

ResourceAllocationException

NotSupportedException

ResourceException

ApplicationServerInternalException

ResourceAdapterInternalException

106 Java Connectors for CICS

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec

Table 5-1 Exceptions thrown by ECI return codes

ECI return code ResourceException

ECI_ERR_INVALID_DATA_LENGTH CICSUserInputException

ECI_ERR_INVALID_EXTEND_MODE ResourceAdapterInternalException

ECI_ERR_NO_CICS CommException

ECI_ERR_CICS_DIED EISSystemException

ECI_ERR_REQUEST_TIMEOUT ResourceAdapterInternalException

ECI_ERR_NO_REPLY ResourceAdapterInternalException

ECI_ERR_RESPONSE_TIMEOUT EISSystemException

ECI_ERR_TRANSACTION_ABEND CICSTxnAbendException

ECI_ERR_LUW_TOKEN ResourceAdapterInternalException

ECI_ERR_SYSTEM_ERROR ResourceAdapterInternalException

ECI_ERR_NULL_WIN_HANDLE n/a

ECI_ERR_NULL_MESSAGE_ID n/a

ECI_ERR_THREAD_CREATE_ERROR ResourceAllocationException

ECI_ERR_INVALID_CALL_TYPE ResourceAdapterInternalException

ECI_ERR_ALREADY_ACTIVE LocalTransactionException

ECI_ERR_RESOURCE_SHORTAGE ResourceAllocationException

ECI_ERR_NO_SESSIONS ResourceAllocationException

ECI_ERR_NULL_SEM_HANDLE n/a

ECI_ERR_INVALID_DATA_AREA ResourceAdapterInternalException

ECI_ERR_INVALID_VERSION ResourceAdapterInternalException

ECI_ERR_UNKNOWN_SERVER ResourceAllocationException

ECI_ERR_UNKNOWN_SERVER ResourceAdapterInternalException

ECI_ERR_CALL_FROM_CALLBACK ResourceAdapterInternalException

ECI_ERR_MORE_SYSTEMS ResourceAdapterInternalException

ECI_ERR_NO_SYSTEMS n/a

ECI_ERR_SECURITY_ERROR SecurityException
 Chapter 5. CCI applications: ECI based 107

The ResourceException class provides the following methods that can be used to
obtain further information about the error condition.

� getMessage()

The getMessage() returns a String containing the CTG error code and a
description of the error. An example of such a String is:

CTG9630E IOException occurred in communication with CICS

All the error messages produced by the J2EE resource adapters can be found
in Appendix C, “J2EE Messages” of the CICS Transaction Gateway, Gateway
Programming, SC34-5938.

� getErrorCode()

This method returns a String that contains either an ECI return code, or a
CICS abend code.

– If the result is an abend code then a CICSTxnAbendException will have
been generated. An abend code is a 4-character code returned by the
CICS server program. These are architected codes provides by CICS to
help determine the cause of the abend. An example being AEIO, which
indicates that the desired CICS program was not found (PGMIDERR).

– If the result is an ECI return code, it should be converted to an integer and
then compared to the constants in the ECIReturnCodes interface. For
further details on using this interface refer to 4.7.1, “ECI return codes” on
page 64.

� getLinkedException()

This method returns a wrapped exception that may have generated the error.
If there is no wrapped exception, null is returned; for instance, when there is
a network problem while communicating with the gateway daemon. The
primary exception will be a CommException, but the linked exception will be a
java.io.IOException.

ECI_ERR_MAX_SYSTEMS ResourceAllocationException

ECI_ERR_MAX_SESSIONS ResourceAllocationException

ECI_ERR_ROLLEDBACK LocalTransactionException

ECI return code ResourceException
108 Java Connectors for CICS

5.6.1 Developing an exception handling routine
It is encouraged that you build an exception handling routine for your
applications. Figure 5-28 and Figure 5-29 show a set of try/catch blocks that
were developed for catching the most common errors in a ECI CCI application.
The full version of this sample is available within the ECIProgTest class that is
provided in the itso.cics.eci.j2ee package with this redbook.

In addition to the sub-classes of ResourceException, the
UnsupportedEncodingException is also catched, since this can be generated by
the getBytes() method that is used to store data in the GenericRecord class.

Figure 5-28 ECI CCI application Exception handling, part 1

} catch (com.ibm.connector2.cics.CICSTxnAbendException re) {
 System.out.println("Error - CICS Abend: " + re.getErrorCode());
 if (re.getErrorCode().equals("AEIO")) {
 System.out.println("Msg: CICS Program not found");
 } else {
 System.out.println("Msg: Check CICS log");
 }
} catch (javax.resource.spi.SecurityException re) {
 System.out.println("Error - Security: " + re.getErrorCode());
 if (Integer.valueOf(re.getErrorCode()).intValue()
 == ECIResourceAdapterRc.ECI_ERR_SECURITY_ERROR) {
 System.out.println("Msg: Check credentials for userid ");
 } else {
 System.out.println("Msg: " + re.getMessage());
 }
} catch (javax.resource.spi.CommException re) {
 System.out.println("Error - Communication: " + re.getErrorCode());
 if (re.getLinkedException() != null) {
 if (re.getLinkedException() instanceof java.io.IOException) {
 System.out.println("Msg: IO error: check gateway daemon");
 } else {
 System.out.println("Linked exception = " + re.getLinkedException());
 }
 }
 if (re.getErrorCode() != null) {
 if (Integer.valueOf(re.getErrorCode()).intValue()
 == ECIResourceAdapterRc.ECI_ERR_NO_CICS) {
 System.out.println("Msg: CICS server is stopped");
 } else {
 System.out.println("Msg: " + re.getMessage());
 }
 }
 Chapter 5. CCI applications: ECI based 109

Figure 5-29 ECI CCI application Exception handling, part 2

} catch ...
} catch (ResourceException re) {
 System.out.println("Unknown Error: " + re.getMessage());
 if (re.getLinkedException() != null) {
 System.out.println("Linked exception = " + re.getLinkedException());
 }
} catch (UnsupportedEncodingException ue) {
 System.out.println("Error - UnsupportedEncoding");
 System.out.println("CodePage: " + ue.getMessage());
 }
}

110 Java Connectors for CICS

Chapter 6. CCI applications in a
managed environment

This chapter discusses using WebSphere Application Server Advanced Edition
V4 in a J2EE Connector Architecture managed environment. It is split into five
sections:

� WebSphere managed environment
This discusses the WebSphere V4 support implemented for the managed
environment, including the restrictions of this release.

� Configuring WebSphere Application Server
This provides a step-by-step guide to enabling and installing the CICS
resource adapters, provided by the CTG, into a managed environment.

� Creating the CCI application
This describes how to build an enterprise application in WebSphere Studio
Application Developer that uses the CCI to interact with a CICS stock trading
program called Trader.

� Testing the enterprise bean
This shows how to test the Trader enterprise bean in WebSphere Studio
Application Developer using the EJB test client.

� Deploying the application to WebSphere
This documents how to deploy the Trader enterprise application to the
WebSphere managed environment.

6

© Copyright IBM Corp. 2002 111

6.1 WebSphere managed environment
Use of the J2EE Connector Architecture managed environment implies a
scenario where a Java application (a component) accesses a resource adapter
through an application server. Management of connections, transactions, and
security is provided by this application server. The component developer does
not have to code this management manually.

WebSphere Application Server Advanced Edition V4 is the first version of this
application server to provide a J2EE Connector Architecture managed
environment. This support was initially added as an optional add-on known as
the Connector Architecture for WebSphere Application Server (technology
preview). The technology preview is an additional download that can be plugged
into the application server to provide a managed environment that adheres to the
Proposed Final Draft #2 of the J2EE Connector Architecture specification.

Subsequent to writing this book, PTF V4.02 was released for Websphere
Application Server. This incorporates the J2EE Connector Architecture
technology preview within the base product.

The J2EE Connector Architecture managed environment support provided by
WebSphere Application Server Advanced Edition V4 with the technology preview
is summarized in this section.

Connection management
Connection pooling is implemented to allow the reuse of CICS Transaction
Gateway connections. Connection pool settings are specified in the Advanced
pane of the connection factory in the Administrative Console (Figure 6-1).

Tip: The WebSphere Application Server InfoCenter contains extensive
documentation on the application server, including the J2EE Connector
Architecture technology preview. The InfoCenter is available online at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

Note: The EJB container in WebSphere V4 supports managed connections.
Therefore, enterprise beans can be used in a managed environment with this
release. This support is not extended to the Web container, therefore, servlets
cannot directly use the managed environment. Instead, they must make a call
to an enterprise bean to utilize the managed environment.
112 Java Connectors for CICS

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

Figure 6-1 Administrative console with connection pooling

For each request made to the CICS ECI resource adapter, WebSphere
Application Server will look for an available connection to the CTG from its pool
of connections. If a connection is available, it will use it for the request, thus
saving the overhead of creating a new connection. If no connection is available, a
new connection to the CICS Transaction Gateway will be created and added to
the pool.

You can limit the number of connections that exist at any one time by specifying a
value in the Maximum Connections field of the connection factory. After this
number is reached, no new connections are created, and the exception
javax.resource.spi.ResourceAllocationException is thrown. Alternatively, you
can specify that new connection requests wait a period of time for a connection to
become available. This period of time is specified in the Connection Timeout field
of the connection factory.

Restriction: We found that the connection timeout feature did not work as
expected in the technology preview. In this scenario, when the maximum
connections value was exceeded, further attempted connections threw
ResourceAllocationException, regardless of the connection timeout value
specified. The connection timeout feature will be fixed in a subsequent release
of WebSphere Application Server.
 Chapter 6. CCI applications in a managed environment 113

If a connection to the CICS Transaction Gateway remains idle for a given period
of time, the connection is disconnected. This period of time is controlled by the
idletimeout value in the CTG.INI file.

Transaction management
Support is provided by WebSphere Application Server for NoTransaction,
LocalTransaction, and XATransaction. The CICS ECI resource adapter supports
LocalTransaction. The CICS EPI resource adapter supports NoTransaction.

Local transaction optimization and last resource optimization are not currently
supported in WebSphere V4. To use last resource optimization, the CICS ECI
resource adapter must be deployed in a managed application server
environment that also provides this support. For more information refer to 3.3.2,
“Transaction management” on page 25.

The get/use/close programming model is recommended for using the connector
inside WebSphere. This model dictates that a connection to a resource adapter
is retrieved, used, and closed with a transaction. The connection object should
not exceed transaction boundaries. The get/use/cache programming model,
which caches connections across transaction boundaries, is not currently
supported in WebSphere V4.

Security management
Only component managed sign on (Option C in the J2EE Connector Architecture
specification) is supported. This requires the component to pass a user ID and
password credentials through the ConnectionSpec to CICS. If the credentials in
the ConnectionSpec are not set, then the credentials in the
ManagedConnectionFactory are used to authenticate to CICS.

Container managed sign on, where the component relies on the application
server to provide security credentials instead of manually specifying them, is not
supported. The <res-auth> element of the deployment descriptor, which
determines whether component or container managed security should be used,
is ignored. In order to be consistent with future releases that may support
container managed signon, the <res-auth> element should be set to
Application.

Important: The get/use/cache programming model, local transaction
optimization, last resource optimization, and container managed
authentication are not currently supported in WebSphere V4, but future
versions will provide these functions.
114 Java Connectors for CICS

6.2 Configuring WebSphere Application Server
This section shows how to configure WebSphere Application Server Advanced
Edition V4 to support the CICS resource adapters. It contains the following steps:

1. Download and install the J2EE connector support.

2. Install the CICS resource adapters.

3. Configure a connection factory.

4. Test the configuration.

Download and install the J2EE connector support
The Connector Architecture for WebSphere Application Server (technology
preview) provides an early implementation of the J2EE Connector Architecture
Specification, Proposed Final Draft #2. It was the first J2EE Connector
Architecture support available for WebSphere Application Server V4.

To install it, do the following:

1. Download the Connector Architecture technology preview for Windows from:

http://www6.software.ibm.com/dl/connarch/connarch-p

2. The file installJ2C_AE.zip will be downloaded in the technology preview.
Extract the contents of this zip file to a temporary directory. Ensure this
temporary directory is not on a remote drive to the WebSphere Application
Server installation. The use of a network drive may cause installation errors.

3. Before running the installation script, stop all WebSphere Application Server
processes, including:

– IBM HTTP Administration
– IBM HTTP Server
– IBM WS AdminServer V4.0

Note: Subsequent to the writing of this redbook, PTF V4.0.2 of
WebSphere Application Server Advanced Edition was released. This
incorporates the J2EE Connector Architecture technology preview within
the actual product, and provides the same functionality documented here.

Note: The acronym J2C is used to represent IBM’s implementation of the
J2EE Connector Architecture, in both the technology preview and
WebSphere Application Server help files.
 Chapter 6. CCI applications in a managed environment 115

http://www6.software.ibm.com/dl/connarch/connarch-p

4. Run the installation script. From the Windows command prompt, move to the
temporary directory where you extracted the zip file, and run installJ2C.bat.
If you encounter errors, consult <WAS_ROOT>\logs\j2Cinstall.log for more
information.

5. After a successful installation, the <WAS_ROOT>\lib directory will contain:

– j2c.jar
– jca.jar
– eablib.jar
– recjava.jar
– ccf.jar

6. Restart the WebSphere Application Server processes.

Install the CICS resource adapters
The CTG provides two CICS resource adapters: the ECI resource adapter and
the EPI resource adapter. This section describes how to install one or both of
these resource adapters into WebSphere Application Server.

This section assumes that the CICS Transaction Gateway V4.0.1 is already
installed. Please follow these steps to install the CICS resource adapters:

1. Open the WebSphere Advanced Administrative Console. Expand
WebSphere Administrative Domain -> Resources. Notice the J2C
Resource Adapters folder (Figure 6-2). This is where the resource adapters
are defined to the application server.

Figure 6-2 Administrative console J2C resource adapters
116 Java Connectors for CICS

2. Resource adapters are installed into application servers using a Resource
Adapter Module (represented by a file with an extension of rar). This RAR file
contains a collection of JAR files relating to the resource adapter, and a
deployment descriptor (ra.xml) that describes the deployment properties for
the resource adapter. The CTG provides a RAR file for each CICS resource
adapter. To install the CICS ECI resource adapter, follow these steps:

a. Right click on J2C Resource Adapters and select New. This opens the
J2C Resource Adapter Properties window.

b. In the General pane, enter a name for the resource adapter in the Name
field. Use CICS ECI.

c. In the General pane, expand the Archive file named textbox.

d. This opens the Install Driver window. Select the node you wish to install
the resource adapter to, then click the Browse button to select the RAR
file to use.

e. To install the ECI resource adapter, move to the <CTG_HOME>\deployable
directory and select cicseci.rar. Select Open to select this file, then select
Install.

f. The completed J2C Resource Adapter Properties window is shown in
Figure 6-3. Select the Connections and Advanced panes to view
information about the resource adapter.

g. Select OK to finish. If the resource adapter was installed correctly, a dialog
box will display saying Command “J2CResourceAdapter.create”
completed successfully.

Figure 6-3 J2C resource adapter properties

3. If you wish to install the EPI resource adapter, repeat the above process,
selecting cicsepi.rar as the archive file name.
 Chapter 6. CCI applications in a managed environment 117

Configure a connection factory
Every resource adapter installed in WebSphere Application Server should have
one or more connection factories associated with it. A connection factory
contains deployment specific connection information. In the case of the CICS
resource adapters, this information includes:

� The connection URL of the CICS Transaction Gateway
� The CICS server to communicate with
� The CICS program to call, or the CICS transaction to start
� A user ID and password to flow to CICS

At least one connection factory is required to use the resource adapter in a
managed environment. Setting up multiple connection factories allows you to
configure a collection of possible connection options. When you deploy an
enterprise bean into WebSphere Application Server, you must select which
connection factory you wish to use.

This section explains how to create and configure a connection factory for the
CICS ECI resource adapter. This connection factory will be used in the next
section to test the J2EE Connector Architecture support in the application server.

� In order to open the WebSphere Administrative Console, take the following
steps:

a. Expand WebSphere Administrative Domain -> Resources -> J2C
Resource Adapters. This will display the resource adapter you have
installed.

b. Expand the CICS ECI resource adapter, and select J2C Connection
Factories. A list of all connection factories created for this resource
adapter (if any) will be displayed in the right pane.

� To create a new connection factory, take the following steps:

a. Right click J2C Connection Factories and select New. This will open the
J2C Connection Factory Properties window.

b. In the General pane enter the following:

• In the Name field, enter a name for the connection factory. Use
SCSCPAA6 - gunner.

• Optionally, enter a path in the JNDI binding path field. We used
eis/gunner/SCSCPAA6. If you leave this blank, a JNDI binding path will
be created for you in the format of eis/<connection factory name>.

• Notice the J2C Resource Adapter field is set to CICS ECI.

– The Advanced pane allows you to set connection pooling information. Do
not change any fields in this pane.
118 Java Connectors for CICS

– The Connections pane allows you to set connection specific information.
Set the following:

• ConnectionURL sets the connection URL of the CICS Transaction
Gateway to use. Use tcp://gunner. If you wish to connect to a local
CTG specify local: here.

• ServerName sets the name of the CICS server to connect to. Use
SCSCPAA6.

• If your CICS region requires security credentials, specify values for the
UserName and Password parameters.

– Select OK when finished. If the connection factory was installed correctly,
a dialog box will display saying Command
“J2CConnectionFactory.create” completed successfully. This
will publish a reference to the connection factory in the JNDI namespace.

� The newly created connection factory will be displayed in the right pane
(Figure 6-4).

Figure 6-4 Administrative console with the Connection Factory
 Chapter 6. CCI applications in a managed environment 119

Test the configuration
Now that the J2EE connector support has been installed, and a connection
factory has been created, the environment is ready to be tested. We show you
how to create an enterprise application that tests the CICS ECI resource adapter
in a managed environment. This provides a quick and easy way to check that the
environment has been configured correctly. The enterprise application calls the
CICS program ECIPROG used in Chapter 5, “CCI applications: ECI based” on
page 71. The enterprise application consists of:

� The HTML page Start.html contains a form that starts the servlet
RunECIPROGServlet. Two parameters are sent to the servlet: the name of the
CICS program to call (in most cases this will simply be ECIPROG), and the
encoding to use.

� The servlet passes these parameters on to the RunECIPROG session bean.

� The session bean makes the call to CICS using the CICS ECI resource
adapter, and returns the response to the servlet. The servlet generates an
HTML page containing this response.

This enterprise application is stored in runeciprog.ear. To obtain this file, see
Appendix D, “Additional material” on page 261.

Follow the instructions below to test the J2EE connector configuration. These
instructions assume you have already created a connection factory called
SCSCPAA6 - gunner with the JNDI name eis/gunner/SCSCPAA6, as described
in, “Configure a connection factory” on page 118.

� From the WebSphere Advanced Administrative Console, select Console ->
Wizards -> Install Enterprise Application.

� This opens the Install Enterprise Application Wizard window (Figure 6-5).
Select Install application (*.ear) then select Browse. Move to the directory
where you downloaded runeciprog.ear, select this file, then select Open.
120 Java Connectors for CICS

Figure 6-5 Installing an EAR file into WebSphere Application Server

� You should use the default values specified in the EAR file to deploy this
enterprise application. Click Next continually until the Completing the
Application Installation Wizard screen appears. At this screen click Finish.
When asked if you would like to regenerate code select No. If the enterprise
application was installed successfully, a dialog box will display saying Command
“EnterpriseApp.install” completed successfully.

� The enterprise application RunECIPROG will be created. To view it in the
Administrative Console, expand WebSphere Administrative Domain ->
Enterprise Applications. See Figure 6-6.
 Chapter 6. CCI applications in a managed environment 121

Figure 6-6 Installed RunECIPROG application

� Now the enterprise application has been installed, the Webserver Plugin must
be notified. To do this, expand WebSphere Administrative Domain ->
Nodes. Right click on the node under which you installed the enterprise
application and select Regen Webserver Plugin.

� Before running this enterprise application, restart the default application
server. To do this, expand WebSphere Administrative Domain -> Nodes ->
<your node name> -> Application Servers. Right click on Default Server.
Stop the server if it is running, then select Start to restart the default server.

� To run the enterprise application, open a Web browser and enter the URL:

http://localhost/RunECIPROGWeb/

You may need to specify a port in the URL, depending on your WebSphere
Application Server configuration. This should display the page shown in
Figure 6-7.
122 Java Connectors for CICS

http://localhost/RunECIPROGWeb/

Figure 6-7 RunECIPROG enterprise application

� Notice that there are two parameters that can be customized:

– CICS program name
This defaults to ECIPROG. If ECIPROG has been defined to CICS with a
program resource name other than ECIPROG, specify that name here.

– Encoding
CICS returns the COMMAREA as a byte array. The servlet will convert this
byte array into a string, using the encoding value specified here. Set this
encoding value to the code page your CICS server is using (typically
IBM037). However, if CICS is performing data conversion for ECIPROG
using a DFHCNV template, specify the encoding value to match the output
code page of DFHCNV (typically an ASCII code page such as 8859_1).
For further details, refer to Appendix B, “Data conversion” on page 227.

� Click the Click here to run ECIPROG button. This will use the CICS ECI
resource adapter and CICS server you specified in the connection factory to
call the ECIPROG CICS program. If the connection was successful, the
following response will be returned in the HTML form (Example 6-1).

Example 6-1 Output from RunECIPROG

Call ECIPROG Servlet
CICS Program name: ECIPROG
Encoding used: IBM037
Values returned from CICS
CICS server: SCSCPAA6
Date: 20/12/01
 Chapter 6. CCI applications in a managed environment 123

6.3 Creating the CCI application
This section describes how to develop a J2EE application that uses the CICS
ECI resource adapter in a managed environment. We show you how to create a
Web application that uses the business logic component of the backend CICS
program TRADERBL (see Appendix C.5, “TRADER” on page 253). The
completed application consists of a number of JSPs, data beans, a servlet, and
an enterprise bean. Most of the components are slightly modified versions of
those created for the book Enterprise JavaBeans for z/OS and OS/390 CICS
Transaction Server V2.1, SG24-6284. However, the enterprise bean was freshly
created for this example. The session bean contains all of the code for
connecting to the CICS server, therefore, this section concentrates on describing
how to develop this particular component.

It is suggested that if you intend to follow the instructions in this section to build
your own Trader enterprise application, you should first download all of the
ancillary classes used in this chapter. See Appendix D, “Additional material” on
page 261 for instructions on how to do this.

Figure 6-8 illustrates the complete architecture of the Web application that was
created.

Figure 6-8 Application architecture of completed Trader Web application

Application overview
To understand how to create the session bean, and how it connects to CICS, it is
not necessary to know the internal workings of the remaining components of the
final Web application. However, an appreciation of the overall flow of the
application is beneficial. The following list explains the sequence of events that
occur when the end user interacts with the application through a Web browser:

CICS TS V1.3

CICS ECI
resource
adapter

CCI

Windows 2000

WebSphere
Application Server

TraderServlet

OS/390

Trader

JSP

Web browser

HTML

 TRADERBL
 (COBOL
 program)

CTG

C
O
M
M
A
R
E
A

124 Java Connectors for CICS

1. The end user presses a button on a Web page that submits a form to the
servlet.

2. The servlet receives the request for action and calls an appropriate method
on the remote interface of the Trader session bean.

3. The session bean connects uses the J2EE CCI to call the CICS program
TRADERBL, using the facilities of the CTG and the CICS resource adapter.

4. The session bean returns any output data from TRADERBL back to the
servlet in the form of a data bean object.

5. The servlet forwards the request to a JSP, which displays the contents of the
data bean to the end user.

We developed and tested our application using WebSphere Studio Application
Developer. We chose this environment instead of VisualAge for Java V4,
because it supports editing of EJB 1.1 deployment descriptors, and can generate
deployment code suitable for the WebSphere Application Server V4 container. It
can export deployed application files directly, ready for installation into
WebSphere Application Server V4. These application files include J2EE
enterprise archives (EAR files), Web application archives (WAR files), and EJB
1.1 deployed JAR files. Application Developer also provides a suitable local test
environment for testing your application components because it uses
WebSphere Application Server Advanced Single Server V4. We also used the
EJB Test Client from Application Developer to test the session bean.

As an alternative to using Application Developer, you can use VisualAge for Java
in combination with the Application Assembly Tool (AAT) to produce deployable
enterprise beans for WebSphere Application Server Advanced Edition.

6.3.1 Configuring WebSphere Studio Application Developer
This section begins by showing you how to configure Application Developer to
develop a Web application that uses the J2EE Connector Architecture support.
We started with a fresh installation of Application Developer, and created projects
that contain the J2EE application. You must perform the following steps:

1. Create projects for the application.
2. Modify the Java build path for our EJB project.
3. Import the Record class and data bean classes.
4. Create an enterprise bean.
 Chapter 6. CCI applications in a managed environment 125

Creating the application projects
This session creates an enterprise application project for a J2EE application that
contains a Web module project to hold the session bean. The following steps
show how to create these two projects in your workspace:

1. Switch to the J2EE perspective in Application Developer by choosing
Perspective -> Open -> J2EE from the menus.

2. Choose File -> New -> Enterprise Application Project. This opens the
Enterprise Application Project Creation dialog box. At this point you can
specify which sub-projects the enterprise application project will contain. Fill
in the dialog as shown in Figure 6-9. Click Finish to create the projects in
your workspace.

Figure 6-9 Creating an enterprise application project

Note: An enterprise application project can consist of both Web module
projects (containing servlets and JSPs) and EJB module projects (containing
enterprise beans). The enterprise application project that was initially created
contained only an EJB project for the session bean. Once the session bean is
complete, add a Web module project to the enterprise application by importing
the pre-existing Web components from a WAR file.
126 Java Connectors for CICS

Modifying the Java build path
Now that the projects have been created, it is necessary to add some JAR files to
the Java build path, which contains the classes that your project will be using.
The following steps shows how to add the JARs to the project’s Java build path:

1. Open the Navigator view from the J2EE Perspective page by choosing
Perspective -> Show View -> Navigator from the menus.

2. Right click on the TraderEJB project in the Navigator view and select
Properties.

3. Choose Java Build Path from the options list on the left of the dialog box, and
then select the Libraries tab from the right hand panel.

4. Click the Add External JARs button to browse to the location of a JAR file in
order to add the Java build path, and click Open. Repeat this step for each of
the JAR files that you require.

5. The session bean makes use of the CICS ECI resource adapter classes and
the EAB Record object classes. Therefore, you must add the JAR files that
contain these referenced classes to the TraderEJB project’s Java build path.

Add the following JARs from a CTG V4.0.1 installation:

– classes\connector.jar
– classes\cicsj2ee.jar

and the following two JARs from a WebSphere Advanced V4 installation:

– lib\recjava.jar
– lib\eablib.jar

6. When you have finished adding all of the JAR files that your EJB will
reference to the Java build path, click OK.

Importing a Record class and data bean classes
To be able to use the CCI we needed to use a Record class to represent the
COMMAREA of the TRADERBL program. We also used data bean classes to
store output information from the backend CICS TRADERBL program and to
enable the JSPs to display this data. The Record class and data beans classes
must be imported into the EJB project so that they can be referenced by the
session bean.

Tip: If you do not want to learn how we developed our enterprise bean, you
can import the sample TraderEJB.jar shipped with this book, and skip
straight to 6.4, “Testing the enterprise bean” on page 139.
 Chapter 6. CCI applications in a managed environment 127

Importing the Record class
Application Developer does not currently provide a tool for creating these Record
objects so you will need to use the EAB toolkit in VisualAge for Java. To use the
EAB follow the same procedure as detailed in 5.2.1, “Creating a Record out of a
COMMAREA” on page 79 to import the COBOL source. This will create a Record
class called itso.cics.eci.j2ee.trader.TraderRecord which should then be
exported the to the local file system. Note, if you wish you can skip the creation of
the Record class, and use the TraderRecord sample class supplied with the
redbook.

The following steps describe how to import the Record into Application Developer
(Figure 6-10):

1. From the J2EE perspective Navigator view, click on the TraderEJB project.
Choose File -> Import from the menu system.

2. Select File system as the import source and click Next.

3. Click Browse to locate the directory containing TraderRecord.java. Once you
have located the directory, click OK.

4. Click on the directory name in the left hand side part of the panel and then
click the TraderRecord.java box on the right hand side. Set the folder name
to:

TraderEJB/ejbModule/itso/cics/eci/j2ee/trader

5. Set all of the other remaining options shown in Figure 6-10, then click Finish
to complete the import.

Figure 6-10 Importing a Record class into Application Developer
128 Java Connectors for CICS

Importing data bean classes
Once you import the Record class, you must import the following classes into the
same directory as the TraderRecord. Follow the same procedure again to import
these extra classes from the itso.cics.eci.j2ee.trader package:

� CompaniesBean.java
� QuotesBean.java

6.3.2 Creating an enterprise bean
The Trader application requires an enterprise bean component that will perform
the task of calling the CICS program TRADERBL. We created a session bean
that implements the following business methods, and uses the CCI to make
connections to CICS:

logon() To logon to the Trader application

logoff() To logoff from the application

getCompanies() To query the companies to trade with

getQuotes() To retrieve quotes for a specific company

buy() To buy shares of a specific company

sell() To sell shares of a specific company

These business methods are responsible for creating input data and handling
output data for the calls to CICS. There is a delegation for the sending and
receiving of data to additional private methods in the enterprise bean. Much of
the code that was created is the same as described in 5.1.1, “Writing a simple
CCI application” on page 73, but in this example, the resource adapter is used in
a managed environment. This section concentrates on the additional code that is
required by the managed environment, and does not discuss in detail the areas
that are common to the non-managed scenario.

You will need to follow these steps to create this enterprise bean:

1. Add a new enterprise bean to the TraderEJB project.
2. Add private methods that use the CCI to connect to CICS.
3. Add the business methods.

Adding a new enterprise bean
Follow the steps below to create the basic framework for the bean in Application
Developer:

1. From the J2EE perspective Navigator view, right click on the TraderEJB
project and choose New -> Enterprise Bean. This opens the Create EJB
dialog. Enter the bean name as Trader, and then insert the full package name
of itso.cics.eci.j2ee.trader in front of TraderBean in the bean class entry
 Chapter 6. CCI applications in a managed environment 129

box. This will automatically complete the package names for the home and
remote interfaces. The completed dialog box is shown in Figure 6-11. Click
Finish to create the enterprise bean.

Figure 6-11 Creating the Trader enterprise bean

2. From the Navigator view, expand the ejbModule folder in the TraderEJB
project, and then expand the package tree for your session bean. You should
see the three Java files that comprise the bean with its home and remote
interfaces; in our case: TraderBean.java, TraderHome.java and Trader.java
respectively.
130 Java Connectors for CICS

Adding private methods that connect to CICS
Now that the framework for an enterprise bean is in place, you can start adding
private methods that will make the connections to CICS using the CCI. These
methods are responsible for flowing the input and receiving the output data. The
business methods that we will add subsequently are responsible for creating the
correct input data for TRADERBL, and for handling the output data.

This section describes how to build the enterprise bean in stages. To edit the
enterprise bean, double click on the TraderBean.java file to open it in the Java
editor. Here you can add the methods shown in this section, as they are
described. When you save your file using the File -> Save menu option,
Application Developer will try to compile your code, and any errors will be
highlighted in the left hand margin of the Java editor.

Obtaining the ConnectionFactory object using JNDI
In a managed environment you must use JNDI to look up the managed
ConnectionFactory object that is provided by the application server, rather than
instantiate your own non-managed instance from a hard-coded set of
parameters.

A private method in the EJB is implemented to do the look up of the
ConnectionFactory in JNDI, and is called in getConnectionFactory().
Figure 6-12 shows the code used in the method, and also illustrates some
changes to the bean class made to support this method.
 Chapter 6. CCI applications in a managed environment 131

Figure 6-12 Obtaining the ConnectionFactory using JNDI

� 1 Add import statements for packages that were used in the session bean.

� 2 Other methods that exist in the bean class are not shown, to keep this figure
concise.

� 3 The ConnectionFactory object should be kept in a private field belonging to
the session bean.

� 4 Obtain an initial context to the JNDI namespace.

� 5 Create the ConnectionFactory instance by looking up a resource reference.

A session bean uses a resource reference to represent a connection factory
object. The JNDI string must match with the resource reference name that is
declared in the EJB JAR deployment descriptor. For further information about
declaring resource references, and an example of how to create one for your
EJB, see 6.3.3, “Editing the EJB deployment descriptor” on page 137.

package itso.cics.eci.j2ee.trader;
1
import javax.naming.*;
import javax.resource.cci.*;
import com.ibm.connector2.cics.*;

public class TraderBean implements javax.ejb.SessionBean {

2 // We have omitted the other methods of the EJB from this figure.

3 private ConnectionFactory cf = null;

private void getConnectionFactory() throws Exception {
try {

4 Context ic = new InitialContext();
5 cf = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS");

} catch (Throwable t) {
t.printStackTrace();
throw new Exception("Lookup for ConnectionFactory failed.");

}
}

}

132 Java Connectors for CICS

You can use any value for the lookup string, as long as it begins with
java:/comp/env/. It is recommend that you also add eis to the name to
indicate that the resource reference is a connection factory object for an EIS
connector. The lookup() method return type is defined as Object, so a cast
is used to change this to the specific class of ConnectionFactory. The
ConnectionFactory is used by other methods in the enterprise bean, so it is
necessary to store its value in the private field declared in 3.

Caching the connection and interaction with get/use/close
Now that you have created a method for obtaining the ConnectionFactory, it is
necessary to add methods for obtaining the ECIInteractionSpec, Connection
and Interaction objects. The code to create these objects is the same as shown
in 5.1.1, “Writing a simple CCI application” on page 73.

However, in a managed environment it is necessary to be careful about caching
these objects. The ECIInteractionSpec in the ejbCreate() method of our EJB
was created and this was then cached for the lifetime of the bean in a private
field. However, do not use caching for the Connection and Interaction objects,
because WebSphere Application Server Advanced V4 only supports the use of a
get/use/close model when using these objects. This means that each usage
(getConnection(), Interaction usage, and close()) of a connection should be
completed within a transaction. You should not cache the objects across
transaction boundaries.

To support this programming model, add two methods, getConnection() and
dropConnection(), which should be used before and after any call to CICS
made using the execute() method of the Interaction object. The extra code
added to the bean class is shown in Figure 6-13, which also shows the required
import statements and fields. For further explanation about the code, see 5.1.1,
“Writing a simple CCI application” on page 73.

Figure 6-13 Methods for getting and dropping the connection

private Connection eciConn = null;
private Interaction eciInt = null;

private void getConnection() throws Exception {
eciConn = cf.getConnection();
eciInt = eciConn.createInteraction();

}
private void dropConnection() throws Exception {

eciInt.close();
eciConn.close();
eciInt = null;
eciConn = null;

}

 Chapter 6. CCI applications in a managed environment 133

ejbCreate() method
Add the code to the ejbCreate() method. This creates and initializes the objects
that will be cached for the lifetime of the EJB. Figure 6-14 shows how to create
the ECIInteractionSpec, ConnectionFactory and TraderRecord objects. Set the
parameters for the ECIInteractionSpec in the same way as for an application in
a non-managed environment, but with values specific to the TRADER
application. Set the function name to TRADERBL, which is the name of the CICS
program you wish to call. Create a TraderRecord object that can be used later
with the Interaction object’s execute() method.

Figure 6-14 ejbCreate() method

Calling the TRADERBL CICS program
Add the callTraderBackend() method as shown in Figure 6-15 to make the call
to CICS. This method uses the get/use/close model and calls CICS in the same
way as a non-managed environment.

Figure 6-15 callTraderBackend() method

private ECIInteractionSpec eSpec = null;
private TraderRecord traderRecord = null;
public void ejbCreate() throws javax.ejb.CreateException {

eSpec = new ECIInteractionSpec();
eSpec.setCommareaLength(372);
eSpec.setReplyLength(372);
eSpec.setFunctionName("TRADERBL");
traderRecord = new TraderRecord();
try {

eSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
getConnectionFactory();

} catch (Throwable t) {
t.printStackTrace();
throw new javax.ejb.CreateException("EJB creation failed.");

}
}

private void callTraderBackend() throws Exception {
try {

getConnection();
eciInt.execute(eSpec, traderRecord, traderRecord);
dropConnection();

} catch (Throwable t) {
t.printStackTrace();
throw new Exception("Error calling CICS: "+t.getMessage());

}}
134 Java Connectors for CICS

Add business methods
Now that you have completed adding the private methods required for making
the connections to CICS, you need to add the methods that will perform the
business logic. Figure 6-16 and Figure 6-17 show the remaining code that must
be added.

Figure 6-16 Trader business methods, part 1

private static final int NUM_OF_COMPANIES=4;
private String ivUserID;
private String ivPassword;

public CompaniesBean getCompanies() throws Exception {
CompaniesBean companies = new CompaniesBean();
traderRecord.setRequest__Type("Get_Company");
try {

callTraderBackend();
} catch (Throwable t) {

t.printStackTrace();
throw new Exception("Error getting companies: " + t.getMessage());

}
for (int i = 0; i < NUM_OF_COMPANIES; i++) {

companies.addCompany(traderRecord.getCompany__Name__Tab(i));
}
return companies;

}
public QuotesBean getQuotes(String company) throws Exception {
QuotesBean quotes = new QuotesBean();
traderRecord.setRequest__Type("Share_Value");
traderRecord.setCompany__Name(company);
traderRecord.setUserid(ivUserID);
try {

callTraderBackend();
} catch (Throwable t) {

t.printStackTrace();
throw new Exception("Error getting quotes: " + t.getMessage());

}
quotes.setUnitSharePrice(traderRecord.getUnit__Share__Price());

quotes.setUnitValue1Days(traderRecord.getUnit__Value__1__Days());
quotes.setUnitValue2Days(traderRecord.getUnit__Value__2__Days());
quotes.setUnitValue3Days(traderRecord.getUnit__Value__3__Days());
quotes.setUnitValue4Days(traderRecord.getUnit__Value__4__Days());
quotes.setUnitValue5Days(traderRecord.getUnit__Value__5__Days());
quotes.setUnitValue6Days(traderRecord.getUnit__Value__6__Days());
quotes.setUnitValue7Days(traderRecord.getUnit__Value__7__Days());
quotes.setCommissionCostSell(traderRecord.getCommission__Cost__Sell());
quotes.setCommissionCostBuy(traderRecord.getCommission__Cost__Buy());
 Chapter 6. CCI applications in a managed environment 135

Figure 6-17 Trader business methods, part 2

After adding these methods to our enterprise bean, add the buy(),
getCompanies(), getQuotes(), logoff(), logon(), and sell() business methods
to the EJB remote interface. To do this, right click on each method name in the
Outline view panel, and choose Enterprise Bean -> Promote to Remote
Interface.

 quotes.setNumberOfShares(traderRecord.getNo__Of__Shares());
quotes.setTotalShareValue(traderRecord.getTotal__Share__Value());
return quotes;

}

public void buy(String company, int numberOfShares) throws Exception {
trade(company, numberOfShares, true);

}
public void sell(String company, int numberOfShares) throws Exception {

trade(company, numberOfShares, false);
}
private void trade(String company, int numberOfShares, boolean buy)

throws Exception {

traderRecord.setRequest__Type("Buy_Sell");
traderRecord.setCompany__Name(company);
traderRecord.setUserid(ivUserID);
traderRecord.setNo__Of__Shares__Dec((short) numberOfShares);
if (buy == true) // if buy

traderRecord.setUpdate__Buy__Sell("1");
else // if sell

traderRecord.setUpdate__Buy__Sell("2");
try {

callTraderBackend();
} catch (Throwable t) {

t.printStackTrace();
throw new Exception("Error getting quotes: " + t.getMessage());

}
}
public void logon(String userid, String password) {

ivUserID = userid;
ivPassword = password;

}
public void logoff() {
}

136 Java Connectors for CICS

6.3.3 Editing the EJB deployment descriptor
Now that the session bean is complete, you must make some changes to its
deployment descriptor. The following steps explain how to make these changes:

1. From the Navigator view, right click on the ejb-jar.xml deployment descriptor
file found in the following folder location:

TraderEJB/ejbModule/META-INF/ejb-jar.xml

2. Select Open With -> EJB Editor from the popup menu.

3. This launches the deployment descriptor editor. Click the Beans tab at the
bottom of the editor.

4. Now click on the Trader bean in the left panel of the editor to display the bean
properties. You have created a stateful session bean, so change the type
option to Stateful by clicking the checkbox to ensure that all the remaining
values are as shown in Figure 6-18.

Figure 6-18 Setting the bean properties

5. Now click on the References tab and select the Resource Reference radio
button. Click on the Trader entry in Resource Name column in the table. Click
the Add button to the right of the table.
 Chapter 6. CCI applications in a managed environment 137

6. Complete each of the columns with the values shown below:

– Resource name: eis/ECICICS
– Type: javax.resource.cci.ConnectionFactory
– Authentication: Application
– Description: CICS ECI resource adapter

7. Press Ctrl-S to save the changes to the ejb-jar.xml file and close the editor.

8. Now right click on the ejb-jar.xml file again and this time select Open With ->
EJB Extension Editor. This will launch the EJB Extension Editor, which
allows you to add extra deployment information to the EJB JAR that is not
contained in the standard deployment descriptor.

9. Click on the Bindings tab at the bottom of the editor and expand the tree
under TraderEJB to display the Trader session bean and the eis/ECICICS
resource reference. Select the Trader session bean and enter a JNDI name
in the right hand panel of the editor as shown in Figure 6-19. We used the
name TraderHome.

Figure 6-19 Adding the JNDI name of the session bean

Important: The Resource Name value must match what comes after
java:comp/env/ in the JNDI lookup string used to locate the
ConnectionFactory object. Our JNDI lookup string was:

java:comp/env/eis/ECICICS

and so we set the Resource Name to:

eis/ECICICS

See “Obtaining the ConnectionFactory object using JNDI” on page 131
for further details.
138 Java Connectors for CICS

10.In a similar way, click on the ResourceRef and give it a JNDI name of
ECICICS. Press Ctrl-S to save the file. This will create an additional file
named ibm-ejb-jar-bnd.xmi in the EJB project in the same folder as
ejb-jar.xml. This file contains the EJB extensions JNDI bindings information
that were just created. Close the EJB Extensions Editor.

6.4 Testing the enterprise bean
Now that the session bean is completed, it is necessary to test your application.
Application Developer provides the runtime environment of WebSphere
Application Server Advanced Single Server V4. This single server version of
WebSphere V4 does not provide the runtime environment for J2EE resource
adapters, so testing is limited to using a non-managed environment. However, it
still proves very useful for testing the other parts of an application; this is
explained in this chapter.

To perform a complete test of the application in a managed environment, it is
necessary to deploy the application into WebSphere Application Server, as
detailed in 6.5, “Deploying the application to WebSphere” on page 149.

Creating a non-managed test environment
We extended our getConnectionFactory() method with the capability to
manually create a ConnectionFactory object instead of using JNDI. This meant
that we could choose between using JNDI when in a managed environment or
manually creating the ConnectionFactory in our application when in the
non-managed test environment. We added the same code as we had previously
used in 5.1.1, “Writing a simple CCI application” on page 73 to manually create
the ConnectionFactory object. Then by adding a Boolean value called isManaged
we were able to switch between what type of environment we were running in.
For testing inside Application Developer set this value to false. When you are
ready to deploy into the managed environment change it to true. Figure 6-20
shows the new version of the getConnectionFactory() method.

Note: It should not be necessary to create these JNDI bindings at this time
because they can be overridden when installing the EJB JAR file into
WebSphere Application Server. However, there will be an exception when
trying to start the enterprise bean in WebSphere if you do not create the
EJB extensions file prior to installation. See 6.5.3, “Installing the EAR file
into WebSphere” on page 150 for information about how the JNDI binding
information is used when the enterprise bean is installed into WebSphere.
 Chapter 6. CCI applications in a managed environment 139

Figure 6-20 Modified getConnectionFactory() method used for testing

You will need to change the ECIManagedConnectionFactory properties to values
that are valid for your system. Note that this sample uses the CTG in local mode.

private void getConnectionFactory() throws Exception {
boolean isManaged = false;
if (isManaged) {

try {
Context ic = new InitialContext();
cf = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS");

} catch (Throwable t) {
t.printStackTrace();
throw new Exception("Lookup for ConnectionFactory failed.");

}
} else {

try {
ECIManagedConnectionFactory mcf =

new ECIManagedConnectionFactory();
mcf.setConnectionURL("local:");
mcf.setPortNumber("2006");
mcf.setServerName("SCSCPAA6");
cf = (ConnectionFactory) mcf.createConnectionFactory();

} catch (Throwable t) {
t.printStackTrace();
throw new Exception("Failed to get ConnectionFactory.");

}
}

}

Note: The simplest method of testing in a non-managed environment is to
hard code the connection details as shown here. However, the J2EE
Connector Architecture specification requires you to use JNDI in both
non-managed and managed environments to avoid the need for different code
in each case. If you decide to also use JNDI in your non-managed test
environment, then you must follow the procedure explained in 5.5, “Using
JNDI” on page 100. If you are considering using a non-managed environment
in production rather than test, it is recommend that you use JNDI.
140 Java Connectors for CICS

Using the EJB test client in Application Developer
Now that you have the necessary code in place, you are ready to test our session
bean in the test environment provided by Application Developer. The following
steps show how this is done:

1. Before the session bean can be run in an application server, its deployment
code must be generated along with the stubs and ties. From the J2EE
perspective Navigator view, right click on the TraderEJB project and select
Generate -> Deploy and RMIC code. Select the checkbox next to the Trader
enterprise bean as shown in Figure 6-21, and click Finish to generate the
code. This will create all of the necessary deployment classes. You must
perform this step whenever you have made changes to the bean code.

Figure 6-21 Generating bean deployment code

2. From the J2EE perspective Navigator view, right click on the name of the EJB
project, in our case TraderEJB. Select Run on Server.

3. If you have not used the test environment previously, then this action will
create the default WebSphere v4.0 Test Environment server instance for you.
The Server perspective will be opened and the server begins to start. This
perspective contains the Console view that shows the server log information.
Once the server has started, you should see the following message at the
bottom of the log:

WSVR0023I: Server Default Server open for e-business

Attention: If you are running WebSphere Application Server on the same
machine as you are using for WebSphere Studio Application Developer, you
will need to either stop WebSphere Application Server, or modify the port 900
used by the JNDI Server in Application Server to prevent a port clash.
 Chapter 6. CCI applications in a managed environment 141

The EJB Test Client will also be displayed and your screen should look similar
to that shown in Figure 6-22.

Figure 6-22 Testing the session bean using the EJB test client

4. If you inspect the console log at this point, you will see that the following
exception occurred during startup:

java.lang.NoClassDefFoundError: javax/resource/cci/InteractionSpec

This occurred because the default server instance that was created does not
have access to the necessary runtime classes to support the J2EE Connector
Architecture and the CICS ECI resource adapter. You must now add these
JARs to the server class path by modifying the server instance.

Note: Although the server instance created by the Application Developer
does not have the required JAR files on its class path, it was the easiest
way to initially create the server configuration. Once it had been created,
you will be able to add these JARs and restart the server, as detailed
below.
142 Java Connectors for CICS

5. Double click on the WebSphere v4.0 Test Environment server instance in
the Server Configuration view of the Server perspective. This will open the
editor for the server instance.

6. Click on the Paths tab at the bottom of the editor to display the class path
panel.

7. Click the Add External JARs button. Locate the JAR file that you wish to add
and click Open. Continue adding JARs in this way until all have been added.

The following JARs from a CTG V4.0.1 installation were added:

classes\connector.jar
classes\cicsj2ee.jar
classes\ctgclient.jar
classes\ccf2.jar
classes\ctgserver.jar

and these JARs were added from a WebSphere Advanced V4 installation:

lib\eablib.jar
lib\recjava.jar

8. Save the server configuration by pressing Ctrl-S and then close the editor.

9. You must now re-start the test environment. Click on the Servers tab
underneath the Console window to show the list of servers. Right click on the
WebSphere v4.0 Test Environment server instance and select Restart.

10.Wait for the server to restart. This time the console log should show no errors
or exceptions on startup, and you can now begin to use the EJB Test Client.
Start by clicking on the JNDI Explorer icon from within the Test Client view.
This opens a view of the JNDI name space as shown in Figure 6-23.

Figure 6-23 JNDI Explorer in the EJB Test Client

11.The home interface of the Trader enterprise bean is displayed with the JNDI
name TraderHome that was specified in 6.3.3, “Editing the EJB deployment
descriptor” on page 137. Click on the TraderHome entry to open the EJB
page of the test client as shown in Figure 6-24.
 Chapter 6. CCI applications in a managed environment 143

Figure 6-24 EJB page of the EJB Test Client

12.In the References panel, fully expand the tree of the Trader EJB References,
and then click on the home interface’s create() method.

13.This will add the create() method to the Parameters panel. This panel is
used to supply any required values to a method before invoking it. As the
create() method takes no input, just click the Invoke button to create an
instance of the session bean. The Results panel will display the new session
bean object. Click the Work with Object button that also appears in the
Results panel at the bottom.

14.This will add an instance of the Trader bean named Trader1 to the EJB
References section of the References panel. Expand the tree on this reference
to see the available methods from the bean’s remote interface.

15.At this point, you can choose a method to invoke. Clicking on our logon()
method causes the method to be displayed in the Parameters panel, as
shown in Figure 6-25.
144 Java Connectors for CICS

Figure 6-25 Invoking methods on the bean’s remote interface

16.This method takes two strings as input. Enter a username into the first box
and a password into the second, and click Invoke, which causes the method
to run successfully, as reported in the Results panel.

17.Next, try the getCompanies() method, which actually makes a connection to
CICS. Click on the method name and then click the Invoke button in the same
way as the logon() method. The getCompanies() method returns an object of
type CompaniesBean, which is one of the data bean classes that was used to
hold information about the companies available for trading.

18.The CompaniesBean object now appears in the Results panel. Click on the
Work with Object button so that you can look at the data contained by this
bean. This adds a CompaniesBean instance to the Object References tree in
the References panel. By expanding the tree on this object, you can choose
one of its available public methods in the same way as you chose a remote
interface method on the session bean. Click on the getCompany() method.

� Set the input int parameter in the Parameters panel to 0 and click Invoke.
This returns the name of the first company, Casey_Import_Export, as shown
in Figure 6-26.
 Chapter 6. CCI applications in a managed environment 145

Figure 6-26 Testing the getCompany() method

19.By using the same techniques, you will be able to use the test client to test
each of the remaining methods in your session bean.

Importing the Web components of the application
Now that the session bean is completed and successfully working, you can add
the Web components of the application to the workspace, and then test the
completed Web application. The following steps explain how to do this:

1. Choose File -> Import from the menu system.

2. Select WAR file as the import source and click Next.

3. Click the Browse button and locate the supplied file TraderWeb.war. This
contains the servlet and JSPs for our application, as well as additional data
bean classes. Select the file and click Open. Complete the remainder of the
dialog box as shown in Figure 6-27.
146 Java Connectors for CICS

Figure 6-27 Importing the WAR file

4. Click Next to display the Module Dependencies dialog.

5. Click the checkbox for TraderEJB.jar to add the session bean to the servlet’s
build and runtime classpaths. Click Next to display the Define Java Build
Settings dialog.

6. The TraderEJB project has already been added to the build class path in the
previous step, so click Finish as there is no need to add any further
resources.

7. The workspace will now contain the completed enterprise application project
Trader, and its two module projects TraderEJB and TraderWeb. You can now
test the application. Restart the test environment like before by switching to
the Servers view; right clicking on the server instance, and choosing Restart.

8. Check the Console view to ensure that the server started without any errors.

9. This time, right click on the TraderWeb project in the Navigator view and
choose Run on Server. This will open the welcome page, Logon.html, of the
Web application in a Web Browser view. Your screen should look similar to
that shown in Figure 6-28.
 Chapter 6. CCI applications in a managed environment 147

Figure 6-28 Testing the Web application

10.Enter a username and password, and click Logon to begin testing the
completed application.

Note: The EJB location parameters tell the servlet that processes the
request where it can find the session bean in a JNDI namespace. If you
used a different name than TraderHome for the enterprise bean’s JNDI
binding, you must change the JndiName value in this form to match the
name you chose. You also have the ability to change the NameService and
ProviderURL values, but the defaults are correct for the scenario that is
described.
148 Java Connectors for CICS

6.5 Deploying the application to WebSphere
Now that the application is complete and tested in the non-managed environment
of Application Developer, you are ready to deploy to a managed environment. We
used WebSphere Application Server Advanced Edition V4.0.1 on a Windows
2000 server to provide the managed environment for the resource adapter and to
host your application. Deployment of your application involves the following
steps:

1. Enable JNDI in the application.
2. Export the application from Application Developer.
3. Install the EAR file into WebSphere.

6.5.1 Enabling JNDI in the application
Before the application is ready to export, you must make one small change to be
able to run in the managed environment. The getConnectionFactory() method
in TraderBean.java needs changing so that it uses JNDI to find the
ConnectionFactory object. Take the following steps:

1. Double click on the TraderBean.java file from the Navigator view to open the
Java editor.

2. Change the isManaged boolean declaration at the beginning of the method to
set the value to true, as shown:

boolean isManaged = true;

3. Save the changes by pressing Ctrl-S and then regenerate the deployment
code, stubs, and ties as described in, “Using the EJB test client in Application
Developer” on page 141.

6.5.2 Exporting the application from Application Developer
The application is now ready to export. Follow these steps to export the
application as an EAR file. The EAR file will contain two components, an EJB
JAR file and a WAR file, which represents the EJB module project and the Web
module project respectively.

Note: Sometimes it is necessary to rebuild the projects before exporting them
from Application Developer. Doing this will force a re-compilation of all of the
code and sometimes fixed problems during runtime. To rebuild a project,
select it from the Navigator view, and choose Project -> Rebuild All from the
menu system. Do this for each of the three projects in the workspace. It is also
recommended that you re-generate the EJB deployment code after doing a
rebuild of the TraderEJB project.
 Chapter 6. CCI applications in a managed environment 149

1. Choose File -> Export from the menu system, and choose EAR file as the
export destination.

2. Select the enterprise application project Trader from the drop down box as
the resource to be exported. Click Browse to choose where to save the file.
The examples saves it as Trader.ear.

3. Click Finish to generate the EAR file.

6.5.3 Installing the EAR file into WebSphere
We prepared our WebSphere Application Server installation by installing the
CICS ECI resource adapter described in Chapter 6.2, “Configuring WebSphere
Application Server” on page 115. We also added a connection factory instance to
connect to a secure CICS server through a local gateway. The following
parameters were set on the connection factory using the menu WebSphere
Administrative Domain -> Resources -> J2C Resource Adapters -> J2C
Connection Factory -> CICS ECI > New

� Name: SCSCPAA7 - local
� JNDI binding path: eis/local/SCSCPAA7
� ConnectionURL: local:
� ServerName: SCSCPAA7
� UserName: CICSRS2
� Password: PASSW0RD

The enterprise application can now be deployed to WebSphere Application
Server Advanced V4. The following instructions show how to install the EAR file:

1. Start the WebSphere Admin Server process and launch the Administrative
Console.

2. From the Administrative Console menu system choose Console -> Wizards
-> Install Enterprise Application.

3. Choose the Install Application (*.ear) radio button and click Browse to
locate the Trader.ear file that was previously exported from Application
Developer. Select the file and click the Open button.

4. Enter Trader for the application name and click Next.

5. Click Next two more times to display the Binding Enterprise Beans to JNDI
Names dialog. This allows you to change the JNDI name under the session
bean that is bound in the JNDI namespace. The JNDI name will already be

Note: We found that the EAR file must be located on the local hard disk.
Any attempt to use a network drive resulted in an exception box being
displayed.
150 Java Connectors for CICS

set to whatever was previously specified in the EJB Extension Editor bindings.
See 6.3.3, “Editing the EJB deployment descriptor” on page 137, which is
TraderHome. Click Next to accept this value.

� Click Next again to display to the Mapping Resource References to Resources
dialog. This will result in the error message shown in Figure 6-29.

Figure 6-29 Invalid Resource Reference JNDI name error message

This error arises because the JNDI binding name ECICICS that are specified
for the eis/ECICICS resource reference (see 6.3.3, “Editing the EJB
deployment descriptor” on page 137) does not match with the JNDI name of
an existing connection factory resource in WebSphere. At this point you can
either cancel the installation, or you can specify that you want to use the JNDI
name of a resource that does exist. We suggest that you use the connection
factory that was configured previously with the JNDI name
eis/local/SCSCPAA7. To do this click OK and follow the remaining
instructions.

6. Click the Select Resource button, and choose the name of the connection
factory resource that you want to use. The name of the resource in
WebSphere, rather than its JNDI name, is displayed. Chose the
SCSCPAA7 - local resource that was previously created. Click OK and click
Next again.

7. Click Next four more times to accept the remaining defaults, and then click
Finish. When prompted whether to regenerate the application code for
installation choose No because this was already created in Application
Developer.

8. A dialog box will appear once installation has completed. Click OK.

9. The Web Server plugin must now be regenerated. From the Administrative
Console, right click on your server node found under the Nodes tree and
select Regen Webserver Plugin.

10.If the server is currently running, you must stop it and then restart it. If it is
already stopped, then you can skip this step. Open the Application Servers
 Chapter 6. CCI applications in a managed environment 151

tree under your server node, right click on the application server (the default
Server in this case) and choose Stop. Wait for the dialog box to indicate that
the server has stopped, and click OK.

11.Right click on the application server again, and select Start to start the
server. Once the server has started, click OK to dismiss the dialog box.

At this point you can start a Web browser and enter the following URL to
begin using the Trader application:

http://<server_name>:<port>/TraderWeb

where <server_name> and <port> are the details for your server. Figure 6-30
shows the login screen of the completed application.

Figure 6-30 Completed Trader application

You are now ready to start using the Trader application to interact with CICS.
152 Java Connectors for CICS

http://<server_name>:<port>/TraderWeb

Part 3 Connecting to 3270
based CICS
transactions

In Part 3 we provide information on how to develop applications that invoke 3270
based CICS transactions using either the EPI support classes, or the CCI and
the CICS EPI resource adapter.

Part 3
© Copyright IBM Corp. 2002 153

154 Java Connectors for CICS

Chapter 7. EPI support classes

Several Java classes are supplied with the CICS Transaction Gateway (CTG)
that facilitate the creation of Java EPI applications. These classes are known as
the EPI support classes and are used to connect from a Java environment to
CICS transactions that were originally created for a 3270 terminal. Because of
their ease-of-use you should choose to use them in place of the lower level
programming interface classes, which require you to construct EPIRequest
objects. In this chapter we describe how to use these EPI support classes in your
applications.

We provide examples of:

� Using the basic EPI support classes to connect to a CICS transaction
� Using the Map class and the BMSMapConvert utility
� Using the provided exception classes for error handling
� Configuring EPI applications that call secured CICS transactions

We begin by building a basic EPI application that connects to the simple CICS
transaction EPIP, which runs our sample server program EPIPROG. We then
show how to use each of the EPI support classes to create a more complex EPI
application.

The sample EPI applications shown in this chapter are offered as a set of classes
in the package itso.cics.epi. Instructions on how to download the sample code
are in Appendix D, “Additional material” on page 261.

7

© Copyright IBM Corp. 2002 155

7.1 Creating a simple EPI application
This section explains each of the basic EPI support classes, and demonstrates
how they can be used to construct a simple EPI application that calls a CICS
transaction. The sample code for this EPI application is provided as the class
itso.cics.epi.Simple. To download this class, refer to Appendix D, “Additional
material” on page 261.

Figure 7-1 CTG scenario for EPI support classes

All of the examples in this chapter use the CTG V4.0.1 on a Windows NT server
for our gateway, and CICS TS V1.3 for our CICS server.

In this section we show how to use the following classes:

� com.ibm.ctg.epi.EPIGateway
� com.ibm.ctg.epi.Terminal
� com.ibm.ctg.epi.Screen
� com.ibm.ctg.epi.Field

Important: To be able to use the EPI support classes, your application must
include the ctgclient.jar file in its classpath. This file can be found in the
classes subdirectory of a CTG installation. In addition, we recommend that
your application includes an import statement like the one shown below,
which allows you to reference the EPI classes without fully qualifying their
package names:

import com.ibm.ctg.epi.*;

OS/390

CICS TS V1.3
 Region

Client
daemon

Gateway
daemon

Transaction
EPIP

APPC

SCSCPAA6

Port
 2006

CTG V4.0.1
Create an EPIGateway
Add a terminal
Start Transaction EPIP
Get the 3270 Screen

Delete the terminal

Windows client

Java CCI
application

Windows NT
gunner

Virtual
terminal

EPI
156 Java Connectors for CICS

7.1.1 Using the EPIGateway class
For an application to be able to send and receive data from a CICS server, it
needs to connect to a CICS Transaction Gateway. An EPI application begins by
creating an object to represent this connection. This object can be an instance of
either the standard JavaGateway class, or its enhanced subclass EPIGateway,
which is provided by the EPI support classes. The EPIGateway class extends the
JavaGateway class by offering the following additional methods that return
information about what CICS servers have been defined to the CTG.

� serverCount()
� serverName()
� serverDesc()

These methods allow an application to find out information about what servers
have been defined to the CTG. If you do not wish to use these methods, then a
JavaGateway object will suffice for creating the connection to the CTG.

An EPIGateway can be created by using its default constructor, and then calling
setter methods for each of its properties. Once these are set, the open() method
is called and creates the connection with the CTG. There is also an overloaded
constructor that simplifies the process by setting each of the properties, and
implicitly calling open() for you. Figure 7-2 shows how we created an
EPIGateway, and used this to connect to the CTG and to list the defined servers
and their descriptions.

Note: Any information about a server definition that is returned by these
EPIGateway methods contains no indication of the actual status of the server.
The existence of a server definition in the CTG configuration file is no
guarantee of the availability of that CICS server. The CICS server may be
incorrectly configured and/or unavailable. You can find out the status of the
CICS server by flowing a test ECI request. See “Status information calls” on
page 39 for details.
 Chapter 7. EPI support classes 157

Figure 7-2 Using the EPIGateway class to connect to the CTG

The following list explains the code we used:

� 1 Create a new EPIGateway object called epiGate. In our example, the URL
and port number are passed into the constructor, which uses these to open
the socket connection to the gateway daemon.

� 2 Call the serverCount() method; this returns the number of servers that are
defined to the gateway as an integer.

� 3 Call the serverName() method to return the name of each CICS server as a
String.

� 4 Get the server description from the CTG by calling the serverDesc()
method. This step, and the previous one, are both repeated for all of the
servers that have been defined to the CTG.

� 5 Close the gateway connection.

� 6 Catch any exceptions. Exception handling is discussed in 7.2.2, “Exception
handling” on page 169.

An example of the output produced by this program is shown in Example 7-1.

Example 7-1 Sample output from the code shown in Figure 7-2

Number of servers:2
Server Name=SCSCPAA6
Description=CICS TS SCSCPAA6
Server Name=SCSCPAA7
Description=CICS TS SCSCPAA7

try {
1 EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);

2 int numSystems = epiGate.serverCount();
System.out.println("Number of servers:" + numSystems);

for (int sysCount = 1; sysCount <= numSystems; sysCount++) {
3 System.out.println("Server Name=" + epiGate.serverName(sysCount));
4 System.out.println("Description=" + epiGate.serverDesc(sysCount));

}

5 epiGate.close();
}
6 catch (EPIException epiEx) { epiEx.printStackTrace(); }
catch (java.io.IOException ioEx) { ioEx.printStackTrace();
}

158 Java Connectors for CICS

7.1.2 Using the Terminal class
Once the gateway has been opened, the EPI application now needs to establish
a terminal resource in CICS. Any transactions initiated using the EPI interface will
be associated with this terminal when running in CICS. The EPI support classes
supply a class, com.ibm.ctg.epi.Terminal to create this required CICS terminal
resource.

A default constructor is provided to initially create the Terminal object and setter
methods are then used to specify the values of any relevant parameters. Once
these parameters have been set, you must call the connect() method, which
causes the terminal resource to be created on the CICS server. Alternatively, you
can use one of the overloaded constructors that will set the required parameters.
Whenever the connect() method is invoked, it causes the CICS supplied
transaction CTIN to be driven on the server and installs the requested terminal.
See Figure 7-10 on page 174 for further details about the CTIN transaction.

There are two different types of Terminal objects that can be created, either a
basic terminal or an extended terminal. We describe each type below.

Basic terminals
A basic terminal offers a subset of the features provided by an extended terminal.
It is created using the Terminal object by specifying just the gateway to use and
the name of the CICS server. You can also optionally specify the netname and
device type that you want CICS to use when it auto-installs the terminal. By
setting both values to null, you can allow CICS to automatically decide what
values to use.

There are two ways of creating a basic Terminal object. The first way is to create
the object using the default constructor (before using the setter methods shown
below) to set each of the properties:

� setGateway()
� setServerName()
� setDeviceType()
� setNetName()

Once you have set each value, you must then call the connect() method which
will send your terminal install request to CICS.

The second way is to use the overloaded Terminal constructor, which will set
each value and implicitly call connect() for you. We recommend that you use this
for convenience. We have used this constructor in all of our examples that use a
basic terminal.
 Chapter 7. EPI support classes 159

Extended terminals
An extended terminal allows you to set the same values as for a basic terminal
but also offers the following extra features:

� Signon capability
� Install timeout
� Read timeout
� Data stream codepage (encoding)
� Security credentials (user ID and password)

Setter methods similar to those used for the basic terminal are provided for each
of these extra parameters. If you set any of these values, which are not provided
by a basic terminal, then your terminal resource will automatically become an
extended terminal. Once again, you can choose between using the default
constructor and then the setter methods, or calling the overloaded constructor.
However, unlike the one for a basic terminal, the overloaded constructor for an
extended terminal does not call connect() for you, so you must call this method
after creating the extended Terminal object.

Using a basic terminal
In the following example, we show you how to create a basic terminal. For
information on extended terminals refer to 7.3, “Connecting to secured CICS
transactions” on page 174.

As well as enabling an application to create a terminal resource in CICS, the
Terminal class also has a send() method, which allows you to start a CICS
transaction. From your EPI application, you can begin the transaction as if it had
been initiated, by entering its name at a real 3270 terminal. The example in
Figure 7-3 shows how we used the send() method of the Terminal class to start
transaction EPIP, which ran our example program EPIPROG. When creating the
Terminal object, we used the overloaded constructor for a basic terminal that
allowed us to specify the gateway, server name, netname, and device type
parameters. The netname and device type parameters allow you to explicitly
state which netname and terminal model you want to use for installing the
terminal on the CICS server.

Note: If you specify a device type of null when creating the Terminal object
then the CTG that you connect to will use the model terminal definition
parameter as specified on the MODELTERM parameter in the CTG.INI file. A
different MODELTERM value can be set for each CICS server that is defined
to the CTG. If no value has been set then the value used will be a CICS
server-specific default value. Because we set the value to null in our
application and also did not define a MODELTERM value in the CTG then we
allowed our CICS server to use its default value.
160 Java Connectors for CICS

Figure 7-3 Using the Terminal class to start a transaction

The new code that was not in the previous example is explained in the following
list:

� 1 Create the CICS terminal.

This Terminal constructor sets the gateway URL to use and the CICS server
name, SCSCPAA6. By specifying null for the netname and devicetype
parameters, we allowed the defaults to be used. The constructor that we used
created a basic terminal because it did not set any of the extended terminal
parameters. Note that the constructor also calls the connect() method, so at
this point, CICS will also install the terminal resource by using the CTIN
transaction.

� 2 Start the transaction EPIP by using the send() method on our Terminal
object.

The first parameter for the send() method is the transaction name, and the
second allows for any input data to be sent as well. This transaction required
no input data, so we set the second parameter to null. When the EPIP
transaction was started, it ran our example EPIPROG program. This example
is extended in 7.1.3, “Using the Screen and Field classes” on page 162, and
shows how we retrieved the output data from the transaction.

� 3 Turn on transaction purging for the terminal disconnect.

By default, any outstanding events or transactions that are still running when
the disconnect() method is invoked (see 4) will cause a TerminalException
to be thrown. Invoking setPurgeOnDisconnect(true) before invoking
disconnect() will cause any such outstanding transactions to be purged
when the disconnect() method is called, and therefore, will allow the terminal

try {
EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);

1 Terminal term = new Terminal(epiGate, "SCSCPAA6", null, null);

2 term.send("EPIP", null);
3 term.setPurgeOnDisconnect(true);
4 term.disconnect();

epiGate.close();
}
catch (EPIException epiEx) { epiEx.printStackTrace(); }
catch (java.io.IOException ioEx) { ioEx.printStackTrace(); }
 Chapter 7. EPI support classes 161

to be successfully deleted without an exception being thrown, as well as allow
for the normal completion of the Java client application. In our example, there
should be no outstanding transactions since the EPIP transaction ends
immediately.

� 4 Delete the CICS terminal.

Although we have managed to initiate a transaction on the CICS server, the
Terminal class does not allow for simulating more advanced interactions with
a 3270 screen. For example, we were not able to retrieve the resulting
APPLID, date and time values that would be displayed to an end-user with a
real 3270 terminal when running our EPIP transaction. We must look at some
extra EPI support class to see how to achieve this.

7.1.3 Using the Screen and Field classes
To be able to simulate more complex interactions with the terminal, we use two
more EPI support classes:

� com.ibm.ctg.epi.Screen
� com.ibm.ctg.epi.Field.

The Screen class represents the actual display of the 3270 terminal screen and
provides methods to query and set screen information. Similarly, the Field class
represents a field on a 3270 screen and provides methods to query and set the
contents and attributes of the field. The example in Figure 7-4 shows how we
used these two classes to retrieve the output from our EPIP transaction. We also
used the Screen and Field classes to input the transaction name, rather than by
using the send() method of the Terminal class as in the previous example.
162 Java Connectors for CICS

Figure 7-4 Using the Screen and Field classes to send and retrieve data

The new code that was not in the previous examples is explained in the following
list:

� 1 Create the Screen object.

The getScreen() method on the Terminal object returns the current screen
associated with our terminal. Since the Terminal object was just created, the
resulting screen consists of only one empty field that covers the entire screen.

� 2 Create the Field object.

Create a Field object by using the field() method on the Screen object to
get the first (and only) field of the screen.

� 3 Set the transaction to run to EPIP.

Set the text value of the field to EPIP by using the setText() method. This is
equivalent to typing EPIP in the top left corner of a clear 3270 terminal
screen.

� 4 Set the key press to send to CICS.

try {
EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);
Terminal term = new Terminal(epiGate, "SCSCPAA6", null, null);

1 Screen scr = term.getScreen();

2 Field fld = scr.field(1);
3 fld.setText("EPIP");
4 scr.setAID(AID.enter);

5 term.send();

6 for (int i = 1; i <= scr.fieldCount(); i++) {
fld = scr.field(i); // get field by index
if (fld.textLength() > 0)

System.out.println("Field " + i + ":" + fld.getText());
}

term.disconnect();
epiGate.close();

} catch (EPIException epiEx) { epiEx.printStackTrace();
} catch (java.io.IOException ioEx) { ioEx.printStackTrace();
}

 Chapter 7. EPI support classes 163

Each Screen object has an attention identifier (AID) that is associated with it
that represents the key press that caused the screen to be sent to CICS. We
wanted to simulate a 3270 terminal user who is typing the transaction ID,
EPIP, and then pressing the Enter key. Therefore, we set the AID of the
Screen object to the enter key by using the com.ibm.ctg.epi.AID class.

� 5 Send the prepared Screen to CICS.

This starts the transaction in CICS.

� 6 Retrieve the output data from EPIP.

After the transaction has executed, it attempts to output data to the terminal it
ran on. This caused our Screen object, scr to be updated to represent the
output screen that the EPIP transaction generated. We used the code in this
section to retrieve each of the fields from this output screen, and to display the
text value of any non-empty fields. An example of the output generated by this
application is shown in Figure 7-2.

Example 7-2 Output from our application using the Screen and Field classes

Field 1:EPIPROG OUTPUT
Field 2:APPLID:
Field 3:SCSCPAA6
Field 4:DATE:
Field 5:16/11/01
Field 6:TIME:
Field 7:11:39:03

The CICS program, EPIPROG, which we ran by invoking transaction EPIP, uses
a BMS map when displaying its output data to a 3270 screen. The BMS map we
used for EPIPROG was called EPIMAP, and was part of mapset EPIMAPS. The
mapset containing this particular map is shown in Appendix C.3, “EPIPROG” on
page 246. Figure 7-5 shows the CICS 3270 screen that is created by the BMS
map when EPIPROG executes.
164 Java Connectors for CICS

Figure 7-5 EPIP 3270 output

The BMS map defines seven fields (seven DFHMDF statements.) These are the
seven fields we can see in the example output shown in Example 7-2 on
page 164. Our EPI application also makes use of the getRow() and getColumn()
methods on each of the Field objects in order to find out the positions at which
each of the fields is to be displayed on a 3270 screen. The values returned by
these methods correspond to the row and column values specified by the POS
attributes of each DFHMDF field in Figure 7-6. Further information about using
the EPI with BMS maps can be found in 7.2.1, “Using the Map class and the
BMSMapConvert utility” on page 166.

7.2 Extending the EPI application
We have already seen how to connect to a simple CICS transaction, now we will
explore some of the advanced features of the EPI support classes including:

� Using information from BMS maps, and connecting to conversational CICS
transactions. The sample code for this application is provided as the class
itso.cics.epi.MapClass.

� Error handling using the EPIException class. The sample code for this
application is provided as the class itso.cics.epi.ErrorHandling.

� Working with secured CICS applications that require a CICS sign-on. The
sample code for this application is provided as the classes
itso.cics.epi.SignonCapable and itso.cics.epi.SignonInCapable.

For instructions on how to download any of our sample code refer to Appendix D,
“Additional material” on page 261.

 EPIPROG OUTPUT

 APPLID: SCSCPAA6
 DATE: 26/11/01
 TIME: 15:20:54

 Chapter 7. EPI support classes 165

7.2.1 Using the Map class and the BMSMapConvert utility
Many CICS applications use BMS for sending and receiving data to and from a
3270 terminal or terminal emulator. A BMS map controls the display of input and
output data by describing where the fields are to be positioned on the screen,
and what display attributes they have, such as color. By using a BMS map, the
presentation logic is separated from the control logic in the program. The server
program controls what data is used to populate the fields, and the BMS map
controls the actual display of this data.

It is unlikely that your EPI applications will be concerned with how the data from
the server program is intended to be displayed on a regular 3270 terminal. For
example, to obtain the date value from the server program EPIPROG, we would
have to know that this information was contained in the fourth field on the screen.
However, if the BMS map was altered, our EPI application must have changed,
because the date value may have been moved to a different field number. What
is required is a way of directly accessing the data contained in the date field
without, being concerned with the presentation logic that was used when
displaying the results on a 3270 terminal. The EPI support classes allow us to do
this through the use of two features:

� The EPI Map support class
� A converter tool, the BMSMapConvert utility

The BMSMapConvert utility takes a BMS map and generates from it the source
code for a Java class. This class extends the provided Map class and represents
the BMS map used by the server program. This generated class is used by our
application to achieve the goal of referring to data values by name, rather than
indirectly by their screen position. Our client application no longer needs to know
about the display layout that the BMS map defined. If changes are made to the
BMS map then we simply re-use the converter tool and replace the old version of
the map class with the newly generated one.

To demonstrate how the BMSMapConvert utility is used, we used the server
transaction EPIP that ran our CICS program EPIPROG. We began by using the
converter tool on the BMS mapset EPIMAPS that EPIPROG uses to display data
(this map can be found on Appendix C.3, “EPIPROG” on page 246). To invoke
the converter utility, we first saved the BMS mapset to our workstation with the
filename epimaps.bms. Then, we added ctgclient.jar to the system classpath
and ran the BMSMapConvert utility as shown in Example 7-3.

Example 7-3 Output from the BMSMapConvert utility

set CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\IBM CICS Transaction
Gateway\classes\ctgclient.jar
C:\>java com.ibm.ctg.epi.BMSMapConvert -p itso.cics.epi epimaps.bms
CCL6704I: BMS Map Converter
CCL6706I: Classes will be created in package itso.cics.epi.
166 Java Connectors for CICS

Reading BMS Files
Reading file epimaps.bms
Finished processing BMS Files
Generating Map class for map EPIMAP

Each map class name is named by concatenating the original map name with the
word Map, in our case creating the EPIMAPMap class. The converter utility will
create a map class for every map in the mapset. In our case there was only one
map (EPIMAP) in our mapset (EPIMAPS) so only one class (EPIMAPMap) was
generated. As well as supplying the name of the BMS source file, we also
specified that we wanted the generated EPIMAPMap class to be in package
itso.cics.epi by using the -p option. The BMSMapConvert utility then created a
directory structure to match this package name and placed the EPIMAPMap.java
file into this package subdirectory.

The file EPIMAPMap.java was created by the converter and put into the
itso\cics\epi subdirectory of the directory that contained epimaps.bms. We
moved this subdirectory structure into the directory where our EPI application
was and added the following statement import itso.cics.epi.EPIMAPMap to our
sample code to reference this new class. We show how our application was then
able to make use of this new EPIMAPMap class in Figure 7-6.
 Chapter 7. EPI support classes 167

Figure 7-6 Using a BMS map class generated by BMSMapConvert

The new code to utilize this EPIMAPMap class is explained in the following list:

� 1 Create the EPIMAPMap object by using the Screen object.

This constructor creates an instance of our EPIMAPMap class and validates the
provided Screen object to check that it was created by the correct map. An
EPIMapException is thrown if the screen does not match the map.

� 2 Get the data fields by name rather than by screen position.

We then accessed each of the fields by calling the field() method on our
map class, using the field names to indicate which field we wanted. The
example shows how we were able to get each field without needing to know
the order or position in which they were specified within the BMS map.
Example 7-4 shows some sample output from the program.

Example 7-4 Output from Map class program

Time : 12:49:46
Date : 14/12/01
Applid : SCSCPAA6

try {
EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);
Terminal term = new Terminal(epiGate, "SCSCPAA6", null, null);
Screen scr = term.getScreen();
Field fld = scr.field(1);
fld.setText("EPIP");
scr.setAID(AID.enter);
term.send();

1 EPIMAPMap epimap = new EPIMAPMap(scr);

2 fld = epimap.field(epimap.TIME);
System.out.println("Time : " + fld.getText());
fld = epimap.field(epimap.DATE);
System.out.println("Date : " + fld.getText());
fld = epimap.field(epimap.APPLID);
System.out.println("Applid : " + fld.getText());

term.disconnect();
epiGate.close();

} catch (EPIException epiEx) { epiEx.printStackTrace();
} catch (java.io.IOException ioEx) { ioEx.printStackTrace();
}

168 Java Connectors for CICS

7.2.2 Exception handling
A number of exception classes are supplied as part of the EPI support classes,
and these should be used in your EPI application to handle potential error
scenarios. Figure 7-7 shows the hierarchy of the supplied EPI exception classes.

Figure 7-7 Hierarchy of the EPI exception classes.

Exception classes are provided that match most of the EPI support classes we
have used, such as Terminal, Screen, Field and Map. These exceptions are
thrown when an error occurs in a method that belongs to the corresponding
support class. If you have multiple catch statements for a given try block then
ensure that your catch blocks for the subclass exceptions come before any catch
statements for a superclass exception. For example, you should code a catch
statement for the EPISecurityException before a catch for EPIException. If you
do not do this, you will receive errors at compile time because of the unreachable
catch block.

Term inalException

EPIGatewayException

EPITxnFailed Exception

EP I3270Exception

EP IRequestException

EPISecurityException

EP IFieldException

EPIScreenException

EPIMapException

EP IException
 Chapter 7. EPI support classes 169

Another commonly encountered exception when using the EPI support classes is
a java.io.IOException. This exception is thrown whenever there is a problem
opening a socket connection to the gateway daemon. Typically this will occur
when first trying to open the gateway connection using the open() method of an
EPIGateway or JavaGateway object.

Each of the exception classes provides a getErrorCode() method which returns
an integer value that corresponds to a reason for the exception. You can use
these values in your code to take a particular action based upon what the error
code value was. You can also use the getMessage() method inherited from the
java.lang.Throwable class to obtain a string that explains why the exception has
occurred. Finally, a stack trace can be obtained from the exception which might
be useful for revealing further information about what went wrong. In the following
code we show how we used each of these methods to handle some commonly
encountered error situations in our code:

Figure 7-8 Using the EPI exception classes

try {
EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);

1 Terminal term = new Terminal(epiGate, "SCSCPAA7", null, null);

2 term.setUserid("CICSRS2");
term.setPassword("PASSW0RD");

3 term.verifyPassword();

term.disconnect();
epiGate.close();

4 } catch (EPISecurityException epiSecEx) {
5 if (epiSecEx.getErrorCode() ==

EPISecurityException.ESI_ERR_PASSWORD_INVALID) {
System.out.println("ERROR -invalid password was supplied");

} else System.out.println("Unknown security error encountered");

6 } catch (EPIException epiEx) {
System.out.println("Unknown EPI error encountered");

7 System.out.println("Error message was :" + epiEx.getMessage());
8 epiEx.printStackTrace();

9 } catch (java.io.IOException ioEx) {
System.out.println("Unable to connect to the gateway");
System.out.println("Reason for error : " + ioEx.getMessage());
ioEx.printStackTrace();

}

170 Java Connectors for CICS

The new code shown in Example 7-8, which is not in the previous examples is
explained as follows:

� 1 Create the CICS terminal.

Initially, we created a basic terminal object as in previous examples, but this
time the server name was SCSCPAA7 instead of SCSCPAA6. Unlike
SCSCPAA6, our SCSCPAA7 server was a CICS region with active RACF
security. We needed to use a secure CICS region, because we wanted to call
the verifyPassword() method of the Terminal object which does not work
when the region has no security configured.

� 2 Set the security credentials associated with the Terminal object.

By calling the setUserid() and setPassword() methods, our Terminal object
was automatically converted from a basic, to an extended terminal, as these
values are specific to extended terminals. See 7.3, “Connecting to secured
CICS transactions” on page 174 for further information about security and
extended terminals.

� 3 Verify the password for user ID CICSRS2.

We called the verifyPassword() method to see if the password we supplied
to the setPassword() method was valid for user ID CICSRS2. This method
throws an exception if the password is invalid for the supplied user ID. The
catch statements at the bottom of Figure 7-8 on page 170 handle any
exception that could arise.

� 4 Catch any EPISecurityException.

We placed this catch block before the EPIException catch block because
EPISecurityException is a subclass of EPIException. If the two catch blocks
were the other way around then the EPIException catch statement would
catch all EPISecurityException errors before they could be caught by the
actual EPISecurityException catch statement. This would result in a
compilation error of an unreachable catch block.

� 5 Determine what caused the EPISecurityException.

Having caught an EPISecurityException, we used the getErrorCode()
method to check what type of EPISecurityException had occurred. This
method returns an integer value, which can be compared to one of the
pre-defined error field values for the exception class. In our case, the ESI
error of ESI_ERR_PASSWORD_INVALID was checked for because this
indicates the password was invalid for user ID CICSRS2. Outputting the
actual error code number in your error messages is not advisable because

Note: The verifyPassword() method uses the External Security Interface
(ESI) which is described in 4.4, “ESI calls” on page 53.
 Chapter 7. EPI support classes 171

the meaning of the number could potentially be changed in a future release of
the CTG. Instead, you should always compare the return code to one of the
fields that are defined or inherited by the exception class, in the way we have
shown here. If the error code is equivalent to
ESI_ERR_PASSWORD_INVALID, then the password was invalid and
therefore, you should print a specific informational error message to inform
the application user about this error. Our code printed Unknown security
error encountered, when the EPISecurityException was caused by some
other error.

� 6 Catch any other EPIException errors.

� 7 Get the CTG error message.

By using the getMessage() method on the exception, we obtained an error
code and explanatory message. The CICS Transaction Gateway Messages
manual for your platform documents explanations for many of these error
codes. We could also have used this method in the previous catch block
because all of the EPI exception classes inherit from java.lang.Throwable,
which provides the getMessage() method.

� 8 Print a stack trace.

For this exception we also printed a stack trace by using the
printStackTrace() method, also inherited from the java.lang.Throwable
class. This can be helpful in debugging an error in the application, but is less
likely to be of use to an end user.

� 9 Catch any errors communicating with the gateway.

Any problems making a network connection to the gateway result in a
java.io.IOException. We caught these types of errors in this final catch
block. We used some of the same method calls that we had used in the other
catch blocks to try to determine why we could not successfully connect.

CICS transaction abends
If a transaction abend occurs in CICS, then no specific exception will be thrown in
your EPI application, and no EPI exception class exists for such an error. This is
because a CICS transaction that was started using the EPI thinks it is interacting
directly with a terminal. If an abend occurs in the transaction, then CICS will try to
send an abend notification directly to the terminal screen rather than to the EPI
application. An example of how this appears on a 3270 terminal is shown in
Figure 7-9.
172 Java Connectors for CICS

Figure 7-9 CICS transaction abend as displayed on a 3270 terminal

This means that a CICS transaction abend will manifest itself as some
unexpected screen contents. To handle CICS abends from your EPI application
you must be able to cope with the screen displaying this abend error message.
You then have the option of retrieving the actual screen contents, which will
include the abend message.

One way of coping with this scenario is to use the Map class. If you try to
instantiate a Map object and the screen contents at the time have not been
created by the correct BMS map, then an EPIMapException is thrown. You can
use this feature to catch unexpected screen contents such as a transaction
abend message, and you can then take the appropriate action.

DFHAC2206 12:54:46 SCSCPAA6 Transaction EPIP failed with abend ABCD. Updates
 to local recoverable resources backed out.
 Chapter 7. EPI support classes 173

7.3 Connecting to secured CICS transactions
For an EPI application to be able to start secured CICS transactions it must
supply security credentials (a user ID and password) for the CICS server to
authenticate. There are two options available to do this:

� Sign on to the CICS terminal.

The security credentials determined at signon are then used for any
subsequent authorization checks when starting other transactions. A user ID
and password need not flow with further requests following the signon. This
requires a signon capable EPI terminal.

� Flow a user ID and password with each EPI request.

This does not require the user to sign on to CICS, and uses a signon
incapable EPI terminal.

An EPI application should, therefore, choose between a signon capable or
signon incapable terminal. This requires the use of an extended terminal. If
using the default basic terminal there is no ability to set the signon capability, and
instead, any security credentials must be hardcoded on each server connection
definition in the CTG configuration file.

Server security configuration
The choice between signon capable and incapable terminals can have
implications for the security configuration on the CICS server. When CICS
installs an EPI terminal it uses the CTIN transaction to perform the operation
(Figure 7-10). This transaction can be secured so that only certain user IDs have
the authority to run it. Therefore, a transaction attach security check will be made
at terminal install time to see if the user ID is authorized to run CTIN. This
happens when the connect() method is invoked on the Terminal object.

Figure 7-10 CTIN diagram

OS/390

CICS TS V1.3
 Region

Client
daemon

Gateway
daemon

Transaction
EPIP

APPC

SCSCPAA6

Port
 2006

CTG V4.0.1
Create an EPIGateway
Add a terminal
Start Transaction EPIP
Get the 3270 Screen

Delete the terminal

Windows client

Java CCI
application

Windows NT
gunner

Virtual
terminal

EPI
174 Java Connectors for CICS

The behavior of this security check can be changed by modifying the
USEDFLTUSER parameter on the CICS server CONNECTION definition. The
value of the parameter can be either YES or NO and it determines whether the
connection should use the CICS region default user ID for incoming requests that
do not specify their own user ID and password.

Therefore, whenever a terminal install request is received with no user ID and
password, this parameter is used to decide whether to use the CICS region
default user ID to run CTIN. Typically, this user ID will be authorized to run CTIN.
If you wish to protect your CICS region from unauthorized terminal install
requests then we recommend that you set USEDFLTUSER to NO. When
USEDFLTUSER is set to NO, any EPI application that attempts to install a
terminal will have to provide a valid user ID and password for CTIN because the
default user ID will not be used if they are omitted. You should use the Terminal
object’s setUserid() and setPassword() methods or set them using its
constructor method to ensure that the required user ID and password flow to
CTIN when the connect() method is called.

However, if USEDFLTUSER is set to NO and you are using signon capable
terminals your application will be required to pass two security checks as follows:

1. Provide a user ID and password for the Terminal object’s connect() method
to successfully run CTIN.

2. Provide another user ID and password (which could be the same) to perform
the actual signon.

If you want to implement an application that requires only a single signon then
you can set USEDFLTUSER to YES to allow the terminal installation to happen
without a security check. If you choose to do this, you should ensure that the
default CICS region user ID has minimal access to CICS resources in order to
protect your CICS region. If USEDFLTUSER is set to YES then set the user ID
and password associated with the Terminal object to null before calling its
connect() method.

7.3.1 Signon capable terminals
If the extended terminal resource is installed as signon capable then the EPI
application is responsible for initiating a CICS signon transaction, such as the
CICS supplied CESN transaction. The EPI application flows the user ID and
password to the CICS signon transaction as 3270 data and the CICS program
uses them to perform an EXEC CICS SIGNON. As an alternative to CESN you
can use any transaction that will perform the signon command for you. Once your
application has signed on, any subsequent calls made to CICS using the EPI will
continue to run with the authority of the signed on user ID without the need to
re-flow the user ID and password.
 Chapter 7. EPI support classes 175

In our first security example, we create a signon capable extended terminal and
ran the CICS supplied CESN transaction to perform a signon. We enable
transaction security on our CICS server so that the EPIP transaction is secured
and can be run by a user ID with sufficient authority. The code in Figure 7-11
shows how we used a signon capable terminal to first sign on to CICS using
CESN and to subsequently be able to run the secured EPIP transaction.

Figure 7-11 Using a signon capable terminal to run CESN

The following list explains the code shown in Figure 7-11.

� 1 Create a signon capable extended Terminal object.

try {
EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);

1 Terminal term = new Terminal(epiGate, "SCSCPAA7", null, null,
Terminal.EPI_SIGNON_CAPABLE, null, null, 0, null);

2 term.connect();
Screen scr = term.getScreen();

3 scr.field(1).setText("CESN");
scr.setAID(AID.enter);
term.send();

4 scr.field(10).setText("CICSRS2");
scr.field(16).setText("PASSW0RD");
term.send();

5 scr.setAID(AID.PF3);
term.send();

6 scr.field(1).setText("EPIP");
scr.setAID(AID.enter);
term.send();

7 EPIMAPMap epimap = new EPIMAPMap(scr);
System.out.println("Time : "+epimap.field(epimap.TIME).getText());
System.out.println("Date : "+epimap.field(epimap.DATE).getText());
System.out.println("Applid : "+epimap.field(epimap.APPLID).getText());

term.disconnect();
epiGate.close();

} catch (EPIException epiEx) { epiEx.printStackTrace();
} catch (java.io.IOException ioEx) { ioEx.printStackTrace();
}

176 Java Connectors for CICS

This particular constructor creates an extended terminal because it implicitly
sets some of the attributes that are not available to basic terminals. We
specified that the terminal was signon capable because we wanted to execute
the signon transaction CESN. We did not provide a user ID and password to
the constructor as we had set USEDFLTUSER to YES on the CICS server
connection resource.

� 2 Install the terminal in CICS.

Because we are using the constructor for an extended terminal we have to
call the connect() method explicitly. The constructor does not call this for us,
and therefore, allows an application the opportunity to do security checks
before attempting to connect the terminal.

� 3 Start the CESN transaction.

� 4 Set the user ID and password fields and send this data to CESN.

� 5 End the CESN transaction by simulating a PF3 key press.

� 6 Run the secured EPIP transaction.

Now that we had signed on, all of our subsequent transactions would be run
with the authority of the user ID we used to perform the signon, in this case
CICSRS2. We were now able to run the secured EPIP transaction as we had
given the user ID CICSRS2 authority to run it when configuring the
transaction security on the CICS server.

� 7 Get the results of the EPIP transaction.

Using the same EPIMAPMap class that we created previously, we were able
to obtain the output data from EPIP. If the EPIP transaction does not run
successfully, you will see an EPIMapException, because the screen contents
do not match those of a successful EPIP transaction.

Note: A signon capable terminal is required by any CICS program that
issues an EXEC CICS SIGNON and its use is not limited to the CESN
transaction. For example, our sample CICS program TRADER (described
in Appendix C.5, “TRADER” on page 253) handles authentication of the
user ID by issuing an EXEC CICS SIGNON after obtaining the user ID and
password from its logon panel. In this scenario, you may want any user to
be able to start the TRAD transaction and to be able to obtain its initial
logon panel. Therefore, you would not protect the TRAD transaction and
hence, would not need to run CESN before starting the TRAD transaction.
However, you would still need to use a signon capable terminal object,
because the TRADER application itself needs to be able to sign on the
user.
 Chapter 7. EPI support classes 177

7.3.2 Signon incapable terminals
If the extended terminal resource is installed as signon incapable, a user ID and
password must be provided with each and every call to CICS made using the
EPI, and a traditional signon is not possible. When using the EPI support classes
and a signon incapable terminal, the user ID and password that flow with each
request are the values that are associated with the Terminal object. These
values can be changed by using the setUserid() and setPassword() methods of
the Terminal object.

Our second security example shown in Figure 7-12 uses a signon incapable
terminal to initiate the secured EPIP transaction. This is achieved by flowing a
user ID and password to CICS with each EPI request. Note that when using a
signon incapable terminal it is not possible to run a transaction that executes the
EXEC CICS SIGNON command, including the CESN transaction.

Figure 7-12 Using a signon incapable terminal to run a secured transaction.

The following list explains the code shown in Figure 7-12

� 1 Create a signon incapable extended Terminal object.

try {
EPIGateway epiGate = new EPIGateway("tcp://gunner", 2006);

1 Terminal term = new Terminal(epiGate, "SCSCPAA7", null, null,
Terminal.EPI_SIGNON_INCAPABLE, "CICSRS1", "PASSW0RD", 0, null);

term.connect();
Screen scr = term.getScreen();

2 term.setUserid("CICSRS2");
term.setPassword("PASSW0RD");

3 scr.field(1).setText("EPIP");
scr.setAID(AID.enter);
term.send();

EPIMAPMap epimap = new EPIMAPMap(scr);
System.out.println("Time : "+epimap.field(epimap.TIME).getText());
System.out.println("Date : "+epimap.field(epimap.DATE).getText());
System.out.println("Applid : "+epimap.field(epimap.APPLID).getText());

term.disconnect();
epiGate.close();

} catch (EPIException epiEx) { epiEx.printStackTrace();
} catch (java.io.IOException ioEx) { ioEx.printStackTrace();
}

178 Java Connectors for CICS

This time we changed the constructor to create a signon incapable terminal
by specifying the signon capability as Terminal.EPI_SIGNON_INCAPABLE. We
also changed USEDFLTUSER value on the CICS connection definition to NO,
so that a user ID and password were required for the terminal install request.
Therefore, we added the user ID and password to the constructor to enable
the terminal to be installed in CICS. The user ID that is specified (CICSRS1 in
our example) should have the authority to run the CTIN client terminal
installation transaction on CICS.

� 2 Set the user ID and password for the request to run transaction EPIP.

Because our terminal was not capable of signing on, we had to pass the user
ID and password every time we made an EPI request. When the send()
method on the Terminal object is executed, the current user ID and password
values associated with the Terminal object are flowed to CICS. We had
configured our EPIP transaction so that only the user ID CICSRS2 had
permission to run it and CICSRS1 was not authorized. Therefore, we had to
update the security credentials by calling the setUserid() and setPassword()
methods on the Terminal object.

� 3 Run the secured EPIP transaction.

Now that the user ID and password have been changed, we started the EPIP
transaction. When we called the send() method EPIP successfully ran using
the updated user ID of CICSRS2.
 Chapter 7. EPI support classes 179

180 Java Connectors for CICS

Chapter 8. CCI applications: EPI based

This chapter describes how to develop applications that use the CICS EPI
resource adapter to connect from a Java environment to CICS transactions,
which were originally created for a 3270 terminal. The CICS EPI resource
adapter is shipped with the CICS Transaction Gateway (CTG), and acts as the
middle tier between a Java application and CICS. The CICS EPI resource
adapter adheres to the J2EE Connector Architecture 1.0 specification.

Java applications interface with the CICS EPI resource adapter using the
Common Client Interface (CCI). This chapter focuses on:

� Using the CCI API directly to develop applications

� Using the Enterprise Access Builder to develop applications that internally
use the CCI API.

� Connecting to secured CICS transactions, relating to both application
development methods.

This chapter focuses on writing Java applications that will be deployed in a
non-managed environment; this is where an application server is not managing
the connection to the resource adapter. For information on managed
environments, see Chapter 6, “CCI applications in a managed environment” on
page 111.

8

© Copyright IBM Corp. 2002 181

8.1 Using the CCI
The Common Client Interface (CCI) defines an application programming
interface (API) which provides a standard way to communicate with Enterprise
Information Systems (EISs) through their specific resource adapters. The CICS
EPI resource adapter facilitates communication with CICS transactions. The CCI
concepts are described in more detail in “Common Client Interface” on page 21.

This section focuses on using the CCI interfaces directly. Alternatively, tooling
such as VisualAge for Java can generate CCI code, and this is discussed in
“Using the Enterprise Access Builder” on page 193.

Figure 8-2 shows the classes used to execute a transaction and their relationship
to the CCI. Note how the methods used to drive an interaction are inherited by
these classes from the interfaces provided by the CCI.

Figure 8-1 CICS EPI resource adapter class diagram

Managed ConnectionFactory

createConnectionFactory()

ConnectionFactory

getConnection()
getRecordFactory()

Connection

createInteraction()
getLocalTransaction()

getMetaData()
getResultSetInfo()

close()

Interaction

close()
getConnection()

execute()
getWarnings()

Record

InteractionSpec

SYNC_SEND
SYNC_RECEIVE

SYNC_SEND_RECEIVE

CCI

EPIManagedConnectionFactory

EPIConnectionFactory

EPIConnection

CICSConnectionFactory

CICSConnection

CICSIinteraction

EPIInteractionSpec

setTermId()
setScreenDepth()
setScreenWidth()
setCursorRow()
setCursorColumn()
setMapName()
setAID()

CICSManagedConnectionFactory
setConnectionURL()
setPortNumber()
setServerName()
setUserName()
setPassword()

EPIInteraction

execute()
<<parameter>>

 execute()
<<parameter>>

createInternational()
 <<creates>>

getConnectionl()
 <<creates>>

createConnectionFactory()
 <<creates>>
182 Java Connectors for CICS

8.1.1 Writing a simple CCI application
The CCI API is typically used with the CICS EPI resource adapter to start a
transaction in CICS, and retrieve the fields generated from the CICS 3270 screen
using a Record. See Figure 8-2.

Figure 8-2 CTG scenario: EPI CCI application

We have written a Java application that starts transaction EPIP in CICS to
demonstrate the use of the CCI API. EPIP is a simple transaction that runs the
CICS program EPIPROG. EPIPROG retrieves the date, time, and CICS server
that it is running on, and displays these values as fields on a 3270 screen. Our
Java application will display these values to standard output. The source code for
EPIPROG is in Appendix C, “Sample CICS programs” on page 241).

The class itso.cics.epi.j2ee.RunEPIP contains a completed solution of this
Java application. To obtain it see Appendix D, “Additional material” on page 261.

Import statements
Our program uses classes from two Java packages:

javax.resource.cci A collection of CCI interfaces, described in the J2EE
Connector Architecture specification.

com.ibm.connector2.cics Classes specific to the CICS resource adapters,
which implement the CCI interfaces

To use classes from these packages, you must either explicitly reference their
package names in the code or, more conveniently, use an import statement.
Figure 8-3 shows the import statements we added to our Java application.

OS/390

CICS TS V1.3
 Region

Transaction
EPIP

SCSCPAA6

Virtual
terminal

Client
daemon

Gateway
daemon

APPC

Port
 2006

CTG V4.0.1

Windows client

Java CCI
application

Windows NT
gunner

EPI

Create Connection
Create InteractionSpec

Create a record
Flow the request
Examine the record
Close the Connection
 Chapter 8. CCI applications: EPI based 183

Figure 8-3 Import statements relating to an EPI CCI application

Connecting to a CICS BMS transaction
Figure 8-4 shows the use of the CCI to start the transaction EPIP in CICS, using
the EPI resource adapter. It describes an extremely basic interaction with CICS,
which can be used as a starting point for developing your own CCI applications.

Figure 8-4 Using the CCI to connect to CICS

import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import com.ibm.connector2.cics.EPIManagedConnectionFactory;
import com.ibm.connector2.cics.EPIInteractionSpec;
import com.ibm.connector2.cics.EPIScreenRecord;
import com.ibm.connector2.cics.EPIScreenRecordImpl;
import com.ibm.connector2.cics.EPIFieldRecord;
import com.ibm.connector2.cics.AIDKey;

try{
//create and set values for a managed connection factory for EPI

1 EPIManagedConnectionFactory mcf = new EPIManagedConnectionFactory();
mcf.setConnectionURL("tcp://gunner.almaden.ibm.com");
mcf.setServerName("SCSCPAA6");

//create a connection object
2 ConnectionFactory cxf=(ConnectionFactory)mcf.createConnectionFactory();

Connection connection = cxf.getConnection();

//create an interaction with CICS to start transaction EPIP
3 Interaction interaction = connection.createInteraction();

EPIInteractionSpec iSpec = new EPIInteractionSpec();
iSpec.setAID(AIDKey.enter);
iSpec.setFunctionName("EPIP");

//create a record to store the response from CICS
4 EPIScreenRecord screen = new EPIScreenRecordImpl();

//flow the request to CICS
5 boolean rc = interaction.execute(iSpec, null, screen);

//close the interaction and connection
6 interaction.close();

connection.close();
7 } catch (ResourceException re) { System.out.println(re.getMessage()); }
184 Java Connectors for CICS

The following list summarizes the logic in Example 8-4:

� 1 Create and set values for an EPI managed connection factory.

The EPIManagedConnectionFactory class is used to set EPI specific
connection related information, including:

– The protocol and hostname of the CTG, through the setConnectionURL()
method. If no protocol is specified, tcp is assumed.

– The port number to use when connecting to the CTG, through the
setPortNumber() method. If no value is specified port 2006 is assumed.

– The CICS server to connect to, through the setServerName() method.

– Security related parameters, such as the setUserName(), setPassword(),
and setLogonLogoffClass() methods.

– The device type of the terminal to use, through the setDeviceType()
method.

The EPIManagedConnectionFactory class is used regardless of whether the
Java application will be deployed in a managed or non-managed
environment.

� 2 Create a connection object.

The information supplied in the managed connection factory is used to create
a connection object. First, invoke the method createConnectionFactory() on
the EPIManagedConnectionFactory object to create a ConnectionFactory
object. Then use this ConnectionFactory object to create a Connection
object.

� 3 Create an interaction with CICS to start transaction EPIP.

Once the Connection object has been established, an Interaction object
must be generated. The Interaction class provides methods to flow requests
to an Enterprise Information System (EIS); in this case CICS. An
EPIInteractionSpec object is instantiated and set, detailing what the
interaction to CICS should do. In this example we perform the equivalent
action of a user at a CICS terminal entering the transaction name EPIP and
clicking Enter.

� 4 Create a Record to store the response from CICS.

Important: The J2EE Connector Architecture states that the
ConnectionFactory object should be retrieved by making a JNDI lookup,
rather than explicitly creating it in the code. We have not used JNDI here
for simplicity. For information on how to incorporate JNDI to lookup a
ConnectionFactory object see 5.5, “Using JNDI” on page 100.
 Chapter 8. CCI applications: EPI based 185

When the CICS EPI resource adapter connects to CICS it will create a virtual
terminal. A virtual terminal is a terminal with no output device to display to.
The virtual terminal is used to communicate with CICS, and when a
transaction is started, the output from this transaction will be written to a
screen in the virtual terminal.

The fields that make up a virtual terminal can be retrieved in an output
Record. The EPIScreenRecord class will be used to hold this information.

� 5 Flow the request to CICS.

The Interaction object has a method called execute() which is used to flow
the request to CICS. This creates a connection to the CTG. The execute()
method used here takes three parameters:

InteractionSpec The interaction specification. For EPI pass an
EPIInteractionSpec object.

Record The input Record describing the fields to send to
CICS. When starting a new transaction, specify this
value as null.

Record The output Record where the screen fields returned by
this interaction will be stored.

The execute() method returns a Boolean to indicate the success of the
execution.

� 6 Close the interaction and connection.

Further interactions are made to CICS by re-using the Interaction object. Do
not attempt to create a new Interaction object because you can only have
one Interaction per Connection. When there are no further interactions to
make, both the Interaction and Connection objects should be closed. This
frees up resources held for this Interaction in the resource adapter, and
closes the connection handle. Note that in a non-managed environment,
closing the connection handle will close the connection to the CTG. In a
managed environment the connection to the CTG will be returned to the
connection pool.

� 7 Catch ResourceException

Note: A return value of true from the execute() method does not
necessarily indicate a successful execution. The occurrence of CICS
generated errors, such as the transaction name not being recognized,
does not influence the return value.
186 Java Connectors for CICS

Use the getMessage() method of ResourceException to retrieve an error code
and explanatory message. The CICS Transaction Gateway Programming
manual for your platform documents provides explanations for these error
codes in Appendix C.

Examining the output Record
Upon a successful interaction with CICS, the output Record will contain the fields
returned in the 3270 screen. EPIP generates the 3270 screen shown in
Figure 8-5

Figure 8-5 EPIP 3270 output

The EPIScreenRecord class has a number of useful methods for working with the
output Record, including:

getFieldCount() Returns an int containing the number of fields in the
output Record.

getField(int index) Specify a field to retrieve. Returns this field in an
EPIFieldRecord object.

getFields() Returns all fields in a java.util.Iterator object.

Figure 8-6 retrieves all of the fields returned in the output Record and displays
the position and text value of each one. Note there is no way to retrieve fields by
name.

 EPIPROG OUTPUT

 APPLID: SCSCPAA6
 DATE: 26/11/01
 TIME: 15:20:54

 Chapter 8. CCI applications: EPI based 187

Figure 8-6 Retrieving fields from the output Record

The EPIFieldRecord class contains many methods to retrieve information about
individual fields including:

getText() The text value of the field.

getTextPos() The current position of the text, as if it were displayed on a
3270 screen.

getTextCol() The column where the text would be displayed on a 3270
screen.

getTextRow() The row where the text would be displayed on a 3270
screen.

isProtected() Returns a Boolean stating if the field is protected

Example 8-1 shows the output from running this program.

Example 8-1 Fields from the output Record

Pos: 1=EPIPROG OUTPUT
Pos: 161=APPLID:
Pos: 175=SCSCPAA6
Pos: 241=DATE:
Pos: 255=26/11/01
Pos: 321=TIME:
Pos: 335=15:20:54

8.1.2 Extending a CCI application
The CCI provides much greater functionality than simply starting a CICS
transaction then examining the result. This section discusses extending the
functionality of your applications in the following areas:

� Synchronous and asynchronous call support
� Making pseudo-conversation calls to CICS
� Options available for working with input and output Records
� CICS transaction abends

EPIFieldRecord field;
for (int i=1; i <= screen.getFieldCount(); i++) {

field = screen.getField(i);
System.out.println("Pos: " + field.getTextPos() + "=" + field.getText());

}

188 Java Connectors for CICS

Synchronous calls
The EPI resource adapter only supports synchronous calls to CICS.
Asynchronous calls are not supported. The setInteractionVerb() method of
EPIInteractionSpec specifies the type of synchronous call to use:

SYNC_SEND Sends a call to CICS, but does not return an output
Record. However, the call blocks until the transaction
has sent all of the information that would appear on
a screen.

SYNC_RECEIVE Retrieves the current contents of the screen in the
output Record

SYNC_SEND_RECEIVE Sends a call to CICS, and returns the response in
the output Record. This is the default.

We recommend using SYNC_SEND_RECEIVE.

Pseudo-conversational transactions
Starting a CICS transaction, then retrieving the generated screen, is a somewhat
limited way of interacting with CICS. Instead, after starting a transaction, you may
want to modify the returned screen and return it to CICS in a
pseudo-conversation. This is a more likely scenario.

Figure 8-7 demonstrates an example of a pseudo-conversational interaction with
CICS. It calls the SWAP transaction, which generates a screen with two
unprotected fields; fields 4 and 6. Values are entered for these fields, then the
updated screen is sent back to CICS. The resultant generated screen swaps the
value of field 4 with the value of field 6, and vice versa. See Appendix C, “Sample
CICS programs” on page 241.

The class itso.cics.epi.j2ee.RunSWAP contains a completed solution of this
program. To obtain it see Appendix D, “Additional material” on page 261.
 Chapter 8. CCI applications: EPI based 189

Figure 8-7 Making multiple interactions to CICS

The following list summarizes the logic in Figure 8-7:

� 1 Start the SWAP transaction in CICS.

No input Record is required when starting a CICS transaction, but an output
Record is needed to store the screen returned by the transaction.

� 2 Set values for fields 4 and 6.

The screen object (the output Record) contains all of the fields from the
screen returned by the SWAP transaction. Fields 4 and 6 are input
(unprotected) fields. Set values for these fields using the setText() method of
EPIFieldRecord.

� 3 Flow another request to CICS.

//create an interaction with CICS to start transaction SWAP
Interaction interaction = connection.createInteraction();
EPIInteractionSpec iSpec = new EPIInteractionSpec();
iSpec.setAID(AIDKey.enter);
iSpec.setFunctionName("SWAP");

//create a record to store the response from CICS
EPIScreenRecord screen = new EPIScreenRecordImpl();

//flow the request to CICS

1 interaction.execute(iSpec, null, screen);

//set values for fields 4 and 6
String value1 = "ABCDE", value2 = "12345";

2 EPIFieldRecord firstValue = screen.getField(4);
firstValue.setText(value1);
EPIFieldRecord secondValue = screen.getField(6);
secondValue.setText(value2);

//flow another request to CICS
3 interaction.execute(iSpec, screen, screen);

//display the new values of fields 4 and 6
4 System.out.println("Value 1: " + value1 + " has become: " +

screen.getField(4).getText());
System.out.println("Value 2: " + value2 + " has become: " +

screen.getField(6).getText());

//flow a request to exit from SWAP
5 iSpec.setAID(AIDKey.PF3);

interaction.execute(iSpec, screen, screen);
190 Java Connectors for CICS

Send the updated screen object as the input Record in the execute() method.
This will send the screen back to CICS with fields 4 and 6 updated, and run
SWAP again. The resultant screen will be returned in the output Record.

� 4 Display the new values of fields 4 and 6

Use the output Record to confirm the fields have swapped. The results are
shown in Example 8-2.

� 5 Flow a request to exit from SWAP

To exit from the SWAP transaction, the user presses the PF3 key. This AID
key is set, then flowed to CICS. The input Record remains unchanged
because it will not be used by the CICS application. The output Record will
contain the response from CICS. A successful response from SWAP is a field
saying Session ended, which could be used to check for a successful
execution.

Example 8-2 Results from RunSWAP

Value 1: ABCDE has become: 12345
Value 2: 12345 has become: ABCDE

Input and output Records
So far we have used the EPIScreenRecord class to work with input and output
Records. However, this is only one of three ways of working with Records:

� Write your own custom Record classes. Your classes are responsible for
parsing the input and output stream manually. These classes must use either
the Streamable interface, or the more efficient screenable interfaces. This is a
complex option, and we do not recommend taking it.

� Use EPIScreenRecord to retrieve output, and modify input of existing screens.
It is an implementation of the screenable interfaces. However, it is not a
custom screen Record builder. It cannot be used to build your own screen
Records from scratch. We have used this option in the above examples.

� Use development tooling to build new Records, and modify the contents of
existing ones. VisualAge for Java provides a set of SmartGuides that can be
used to produce Record classes, either from scratch or basic mapping
support (BMS) source code. This is described in “Building the output Record”
on page 195.

Note: When interacting with a started CICS transaction, the execute()
method must specify both an input and output Record.
 Chapter 8. CCI applications: EPI based 191

CICS transaction abends
If a transaction abend occurs in CICS then no specific exception will be thrown in
your application, and no exception class exists for such an error. This is because
a CICS transaction that was started using the EPI thinks it is interacting directly
with a terminal. If an abend occurs in the transaction, then CICS will try to send
an abend notification directly to the terminal screen rather than to your
application. An example of how this appears on a 3270 terminal is shown in
Figure 8-8.

Figure 8-8 CICS transaction abend as displayed on a 3270 terminal

This means that a CICS transaction abend will manifest itself as some
unexpected screen contents. To handle CICS abends from your Java application
you must check the output Record for these messages manually.

8.1.3 Tracing
Tracing is set using the EPIManagedConnectionFactory class. Two actions must
be taken to enable tracing:

1. Turn logging on through the setLogWriter() method.

2. Specify the level of tracing to use through the setTraceLevel() method. Valid
levels are tracing are:

RAS_TRACE_OFF Disable all tracing (except adapter
messages)

RAS_TRACE_ERROR_EXCEPTION Output exception trace stacks

RAS_TRACE_ENTRY_EXIT Output method entry and exit stack
traces

RAS_TRACE_INTERNAL Output debug trace entries

DFHAC2206 12:54:46 SCSCPAA6 Transaction EPIP failed with abend ABCD.
Updates to local recoverable resources backed out.
192 Java Connectors for CICS

Each level of trace builds upon the previous level, so ENTRY_EXIT includes
everything in ERROR_EXCEPTION, and INTERNAL includes everything in all
the trace levels. The code below shows INTERNAL tracing being sent to the
stdout destination using System.out.

EPIManagedConnectionFactory mcf = new EPIManagedConnectionFactory();
mcf.setLogWriter(new java.io.PrintWriter(System.out));
mcf.setTraceLevel(new Integer(mcf.RAS_TRACE_INTERNAL));

8.2 Using the Enterprise Access Builder
The Enterprise Access Builder (EAB) is a tool provided by VisualAge for Java
Enterprise Edition. It provides a set of SmartGuides that simplify communication
with EISs such as CICS.

EAB generates code based on properties set in the SmartGuides. Prior to
VisualAge for Java V4, the EAB generated code conformed to the IBM Common
Connector Framework (CCF). Version 4 introduced support for the J2EE
Connector Architecture, in addition to the CCF support. The support for the J2EE
Connector Architecture generates code that uses the CCI API. To enable this
support in VisualAge for Java V4, see Appendix A, “Configuring the CICS
connectors in VisualAge for Java” on page 219.

This section concentrates on using EAB with the J2EE Connector Architecture. It
is divided into two sections:

� Writing a simple EAB application

This section describes how to build applications that start CICS transactions,
and interrogate the responses returned by these CICS transactions.

� Extending an EAB application

This section describes how to build applications that make
pseudo-conversational interactions with CICS transactions.

Attention: We found that the CCI trace output was not particularly useful and
only showed the execution of methods within the CCI. If you wish to debug
your application you are advised to use the com.ibm.ctg.client.T class which
provides much more useful information. For details on using the T class refer
to 4.6, “Tracing” on page 61.
 Chapter 8. CCI applications: EPI based 193

8.2.1 Writing a simple EAB application
This section describes how to write a program to start a transaction in CICS, and
uses the EAB to handle the response. This method is an alternative to using the
CCI directly, as described in 8.1.1, “Writing a simple CCI application” on
page 183. We have used the CICS transaction EPIP as an example in both
sections to ease comparison between these two techniques.

EPIP is a simple transaction that runs the CICS program EPIPROG. EPIPROG
retrieves the date, time, and CICS server name it is running on, and displays
these values to the screen (see Appendix C, “Sample CICS programs” on
page 241).

Two EAB components are required to create a simple interaction with a CICS:

� Record beans

A Record bean maps to the content of a CICS 3270 screen. There are two
types of Record bean; input and output. An input Record represents screen
content to send to a CICS transaction, and an output Record represents the
screen content generated by a CICS transaction.

Many CICS screens are defined by basic mapping support (BMS). The EAB
can take a BMS map and use it to generate a Record bean that implements
the javax.resource.cci.Record interface (as required by the J2EE
Connector Architecture). The generated Record bean will contain getter and
setter methods to interact with the screen fields encompassed by the Record.

� Command beans

A Command bean is a Java bean that contains everything necessary to
interact with CICS. It contains the following:

– Connection information, including the URL of the resource adapter, and
the name of the CICS server to use.

– Interaction information, including the CICS transaction to start.

– The input and output Record beans to use.

An application that wants to interact with CICS can use a Command bean to
do so. The Command bean exposes the getter and setter methods of the
input and output Record beans, and the execute() method that performs the
interaction with CICS. The application programmer needs to know very little
about CICS. They only need to know the name of the getter and setter
methods, and that the execute() method causes the interaction with CICS. All
of the other details of the interaction with CICS are handled by the Command
bean.
194 Java Connectors for CICS

The package itso.cics.epi.j2ee contains the classes that make up the
completed solution. To obtain it see Appendix D, “Additional material” on
page 261. The key classes used are:

EPIPMAPRecord The output Record
EPIPCommand The Command bean
EPIPClient The client which uses the Command bean

This section describes how to use the EAB to create an application that interacts
with the CICS transaction EPIP. It consists of the following stages, which must be
completed in order:

� Building the output Record
� Building the Command bean
� Testing the Command bean
� Writing a client to use the Command bean

Building the output Record
An output Record is required to store the content of the screen generated by the
EPIP transaction. No input Record is needed because you are not required to
specify an input Record when starting a CICS transaction.

This Record can be built from scratch, but if the screen you wish to map has a
basic mapping support (BMS) map associated with it, you can instead use this
BMS map to automatically generate a Record (Figure 8-9).

Figure 8-9 Creating a Record from a BMS map

The following steps describe how to build an output Record using this approach.

1. In VisualAge for Java create a project called CICS Connectors Redbook, and
a package within this project called itso.cics.epi.j2ee.

BMS
Map

RecordType

EAB Record Type Editor

Import BMS to
Record Type
(SmartGuide)

Create Record from
 Record Type
(SmartGuide)

Record
 Chapter 8. CCI applications: EPI based 195

2. The BMS map source code to build the output Record is contained in the file
epimaps.bms. (Details of how to obtain it are in Appendix D, “Additional
material” on page 261).

3. Right click package itso.cics.epi.j2ee and select Tools -> Enterprise
Access Builder -> Import BMS to Record Type. This will open the Import
BMS to Record Type SmartGuide.

– Select the Add button, highlight the epimaps.bms file from the appropriate
directory, then select Open.

– The filename should display in the Filenames list. Select Next.

4. EPIMAP should appear in the Available Maps pane. Select it, then click the >
button. EPIMAP should now appear in the Selected Maps pane as shown in
Figure 8-10. Select the Next button.

Figure 8-10 Import BMS to Record Type SmartGuide

5. Make sure the project is CICS Connectors Redbook, and the package is
itso.cics.epi.j2ee. Enter a class name of EPIMAPRecordType. Ensure
Continue working with newly created record type and Create record
from record type are selected. Click Finish.

6. The Create Record from Record Type SmartGuide will appear. Enter a class
name of EPIMAPRecord. Perform the following:

– Select Access Method to be Direct, and the Record Style to use Custom
Records. This generates the fastest type of Record bean.
196 Java Connectors for CICS

– In the Additional Options section, ensure Generate with Notification is not
selected. Selecting this option can significantly slow the performance of
the Record bean.

– Select the following from the Additional Options section:

• Shorten Names (this generates names that are more readable)

• Generate as javax.resource.cci.Record interface (this is an interface
the Record bean must implement to be J2EE compliant)

Figure 8-11 shows a completed SmartGuide. Upon completing this
SmartGuide select Finish. This will generate a Record bean with getter
and setter methods for each field in the BMS map.

Figure 8-11 Create Record from Record Type SmartGuide

Building the Command bean
The following steps describe how to build a Command bean which can interact
with the CICS transaction EPIP.

1. Right click on the itso.cics.epi.j2ee package and select Tools ->
Enterprise Access Builder -> Create Command. This will open the Create
Command SmartGuide. Enter the following information:
 Chapter 8. CCI applications: EPI based 197

– Set the class name to EPIPCommand.

– Select Edit when finished.

– Click Browse next to the Class name field for Connection Information.
Select ConnectionFactoryConfiguration and click OK. This indicates to
the SmartGuide that the generated Command bean will adhere to the
J2EE Connector Architecture specification.

– Click Browse next to the Class name field for InteractionSpec. Select
EPIInteractionSpec and click OK. Notice only J2EE Connector
Architecture classes (those in the com.ibm.connector2.cics package) are
available for selection.

After entering this information click Next.

2. Enter information about the input and output Records to use.

– You do not need an input Record bean because you will be starting a new
CICS transaction. Leave the fields in the Input Record bean section
unchanged.

– The output Record will store the contents of the screen returned by the
EPIP transaction. In the Output Record beans section, select Select
output bean records, then click the Add button.

– A SmartGuide window opens (Figure 8-12). Notice Implements
javax.resource.cci.Record is selected and greyed out so that it cannot be
changed. The Record bean we created earlier adheres to this interface.

• Select Browse next to the Class name field.

• Select EPIMAPRecord from package itso.cics.epi.j2ee and click
OK.

• Click OK again, then finally click Finish to build the Command bean.

Figure 8-12 SmartGuide to select the output Record to use
198 Java Connectors for CICS

3. The Command bean will be generated, then the Command Editor window will
appear. This tool lets you set properties in the Command bean. First set the
connection factory fields. Highlight Connector in the top left pane, then select
com.ibm.ivj.eab.command.ConnectionFactoryConfiguration in the top
right frame. This will display properties and values relevant to the connection
to CICS (Figure 8-13).

.

Figure 8-13 Command Editor

4. Perform the following:

– Select the null value for the managedConnectionFactory property. This
presents a pull-down menu of valid managed connection factories. Select
EPIManagedConnectionFactory. The EPIManagedConnectionFactory
class is used regardless of whether the Command bean will be deployed
in a managed or non-managed environment.
 Chapter 8. CCI applications: EPI based 199

– To the left of the managedConnectionFactory property click on + to expand
this property. Numerous sub-properties of managedConnectionFactory
are displayed. Set the following:

• Set the connectionURL to configure the protocol and hostname for the
gateway daemon. We used tcp://gunner.almaden.ibm.com for our
CTG on Windows NT. If the protocol is omitted, tcp is assumed.

• Note the portNumber is by default 2006. Change this if necessary.

• Change the serverName to the CICS server name where EPIP will
start. We used SCSCPAA6.

5. Highlight com.ibm.connector2.cics.EPIInteractionSpec in the top right
pane. These properties set what interaction should take place once
connected to CICS.

– Set the functionName property to EPIP. This specifies the name of the
transaction to start in CICS.

– Ensure AID is set to enter which performs the equivalent of pressing Enter
on the CICS terminal.

6. The Command bean is now complete. To save the values set using this editor
select Command -> Save.

Testing the Command bean
VisualAge for Java provides a utility to test a Command bean. We recommend
that you use this utility before attempting to integrate Command beans into your
applications. Follow the steps below to test EPIPCommand.

1. The EAB Test Client can be launched in two ways:

– If you still have the Command Editor open select Command -> Run Test
Client.

– Alternatively select Workspace -> Tools -> Enterprise Access Builder
-> Launch Test Client.

2. Once the EAB Test Client has started select Command -> Create new
instance. Choose class EPIPCommand from the itso.cics.epi.j2ee
package then click OK. This will create an instance of the Command bean.

Important: The J2EE Connector Architecture states that the
ConnectionFactory object should be retrieved by making a JNDI
lookup, rather than explicitly creating it in the code. We have not
used JNDI here for simplicity. For information on how to incorporate
JNDI to lookup a ConnectionFactory object see 5.5, “Using JNDI”
on page 100.
200 Java Connectors for CICS

3. Highlight EPIMAPRecord Output in the left pane. This displays the
properties of the output Record. Click on the Invoke button (an icon of a
running man) to run the Command bean.

4. When the Command bean completes execution, the output Record properties
will be populated. Notice the values of the applid, date, and time properties.
Figure 8-14 shows the results of a successful invocation.

Figure 8-14 EAB Test Client

Writing a client to use the Command bean
To use EPIPCommand in a Java application:

� Create a class called EPIPClient in the itso.cics.epi.j2ee package and
enter the code shown in Figure 8-15 in the main() method.
 Chapter 8. CCI applications: EPI based 201

Figure 8-15 Testing the Command bean

The getCeOutput0() method returns an instance of the EPIMAPRecord class.
This instance contains the values returned by the EPIP transaction. Notice
how you do not need to understand the interaction with CICS when writing the
client; all of this logic is handled internally by the Command bean.

Normally, input and output fields can be promoted to be visible from the
Command bean, and thus instead of:

command.getCeOutput0().getApplid()

the applid value could be set using:

command.getApplid()

However, the fields applid, date, and time are defined as protected fields in
the BMS map which was used to generate the output Record. A protected
field means the value of the field cannot be changed. The EAB cannot
promote protected fields, and thus the getCeOutput0() method is used
instead. An example of promoting unprotected fields in a Record is shown on
page 205.

� Set the classpath of EPIPClient by right clicking on the EPIPClient class and
select Properties. Select the Class Path tab, then click Compute Now. This
will determine the projects that are needed in the classpath to run
EPIPClient. Once the classpath has been generated, click OK.

� Run EPIPClient. Example 8-3 shows the output from running this program.

Example 8-3 Results from the EPIPClient test client

CICS: SCSCPAA6
Date: 14/11/01
Time: 12:16:48

public static void main(java.lang.String[] args) {
try{

EPIPCommand command = new EPIPCommand();
command.execute();
System.out.println("CICS: " + command.getCeOutput0().getApplid());
System.out.println("Date: " + command.getCeOutput0().getDate());
System.out.println("Time: " + command.getCeOutput0().getTime());

} catch(RuntimeException e) {
System.out.println(e.getMessage());

}
}

202 Java Connectors for CICS

8.2.2 Extending an EAB application
The EAB provides much greater functionality than simply starting a CICS
transaction, then examining the result. This section discusses extending the
functionality of your applications in the following areas:

� Pseudo-conversational transactions
� Tracing

Pseudo-conversational transactions
We have seen that a Command bean can be used to make a single interaction to
CICS. However, to perform many business functions, a user has a series of
interactions with a CICS transaction. For example, to work with a CICS
application a CICS user might:

� Start a CICS transaction
� Move through a set of menus pseudo-conversationally
� Exit from the application

This series of functions requires multiple Command beans. The EAB contains a
navigator component which can be used to navigate a path through a series of
Command beans. An application programmer that wants to invoke a CICS
business function needs only to interact with the navigator by using the getter
and setter methods, and calling the execute() method of the navigator. The
application programmer does not need to know any details of the CICS
transactions or Command beans used.

This section generates a navigator that interacts with the SWAP transaction.
SWAP runs the CICS program SWAPPER which generates a screen with two
unprotected fields; fields 4 and 6. Values are entered for these fields, then the
updated screen is sent back to CICS. The resultant generated screen swaps the
value of field 4 with the value of field 6, and vice versa. For more information on
SWAP see Appendix C, “Sample CICS programs” on page 241.

This represents three interactions with CICS, thus three Command beans are
required, as follows:

StartSWAPCommand Starts transaction SWAP, and returns the generated
screen in the output Record

SWAPCommand Allows modification of two fields in the screen, runs
the SWAP transaction, then returns the generated
screen in the output Record

EndSWAPCommand Exits the SWAP transaction by pressing F3. No input
or output Records are used.
 Chapter 8. CCI applications: EPI based 203

The following instructions describe how we generated a navigator that controls
the execution of the Command beans for the SWAP transaction. If you are
unfamiliar with EAB Records and commands, see 8.2.1, “Writing a simple EAB
application” on page 194.

� In VisualAge for Java, create a Record that represents the screen format
generated by the SWAP transaction.

a. Using swapset.bms (see Appendix D, “Additional material” on page 261),
create a Record Type called SWAPSETRecordType in the
itso.cics.epi.j2ee.nav package of the CICS Connectors Redbook
project.

b. Use SWAPSETRecordType to generate a Record called SWAPSETRecord.
Remember to select the Generate as javax.resource.cci.Record
interface checkbox to build a Record bean suitable for use with the EPI
resource adapter.

� Build the three Command beans StartSWAPCommand, SWAPCommand, and
EndSWAPCommand. Use the information in Table 8-1 to set the correct values.

Table 8-1 Command bean properties

Note: When specifying a class name for the InteractionSpec, ensure you
select the EPIInteractionSpec class from the com.ibm.connector2.cics
(the J2EE connector related package) not from com.ibm.connector.cics
(the Common Connector Framework related package)

StartSWAPCommand SWAPCommand EndSWAPCommand

Class name for
Connection
Information

no value no value no value

Class name for
InteractionSpec

EPIInteractionSpec from
the package
com.ibm.connector2.cics

EPIInteractionSpec from
the package
com.ibm.connector2.cics

EPIInteractionSpec from
the package
com.ibm.connector2.cics

Input Record
bean

no value SWAPSETRecord no value

Output Record
bean

SWAPSETRecord SWAPSETRecord no value

functionName
property

SWAP no value no value

AID property enter enter PF3
204 Java Connectors for CICS

� You need to promote the properties you wish to make visible to the navigator.
Update the SWAPCommand input Record so you can set properties op1 and
op2, and update the SWAPCommand output Record so you can get
properties op1 and op2.

– Right click on SWAPCommand and select Tools -> Enterprise Access
Builder -> Edit Command.

– From the Command Editor, select Input in the top left pane, and
SWAPSETRecord in the top right pane.

• Right click on op1 and select Promote Property.
• Right click on op2 and select Promote Property.

– From the Command Editor, select Output in the top left pane, and
SWAPSETRecord in the top right pane. Promote properties op1 and op2
as described above.

� A navigator is needed to control the flow of these commands. There are no
SmartGuides for creating navigators, so you must use the Visual Composition
Editor of VisualAge for Java to construct the navigator. Right click on the
Create Class SmartGuide to build a new class in the
itso.cics.epi.j2ee.nav package called SWAPNavigator. Specify this class
uses CommunicationNavigator as its superclass. Select the Compose the
class visually checkbox.

� The Visual Composition Editor will open. The Visual Composition Editor
provides a logical place to build a navigator that will control the flow of three
Command beans.

The first task is to add the beans to use in the navigator.

– Select the Choose Bean button, as shown.

– In the Choose Bean window ensure Bean Type is
set to Class.

– Click the Browse button.

– Type ConnectionFactoryConfiguration and
clicking OK. The completed window is shown in
Figure 8-16.

Tip: You do not need to always specify an input and output Record when
interacting with a started CICS transaction if you are using the EAB.
 Chapter 8. CCI applications: EPI based 205

Figure 8-16 Choose Bean window

Click OK to add this bean to the navigator. A crosshair will appear, move this
crosshair to the white central pane and click here to add the bean.

� Repeat this process for the Command beans you have created:

– StartSWAPCommand
– SWAPCommand
– EndSWAPCommand

Figure 8-17 shows all four beans added in the Visual Composition Editor.

Figure 8-17 Beans in the Visual Composition Editor
206 Java Connectors for CICS

� Edit the properties of ConnectionFactoryConfiguration1 by double clicking on
it. Set the managedConnectionFactory property to be
EPIManagedConnectionFactory. Note that EPIManagedConnectionFactory is
used regardless of whether you are creating a navigator to be deployed in a
managed or non-managed environment. Set the following properties within
the EPIManagedConnectionFactory:

– connectionURL should be set to the network protocol and hostname of
the CTG. We used tcp://gunner.

– serverName should be set to the CICS server name to connect to. We
used SCSCPAA6.

� To make the promoted properties in SWAPCommand1 visible from the navigator:

– Right click on SWAPCommand1 and select Promote Bean Feature.

– From the Property list select OP1, OP2, OP11 and OP21 individually and
click >> to move them to the Promoted features list.

– Click OK.

� The next stage is to connect the beans, based on events. The navigator
needs some connection information (as we did not specify connection
information in the individual Command beans).

Right click on
ConectionFactoryConfiguration1 and
select Connect -> this. The cursor changes
to a spider. This is the first stage of a
connection. To complete the connection
click anywhere in the white space (this
represents the navigator) to launch the End
connection to (SWAPNavigator) window, as
shown.

Select connectionFactoryConfiguration
and click OK. This sets the
connectionFactoryConfiguration property
of the navigator.

� The events of the navigator must be
connected to the Command beans to create
a logical flow.

– When the navigator starts it should execute StartSwapCommand1. To do
this:

• Right click in the navigator window and select Connect, this opens the
Start connection from (SWAPNavigator) window.
 Chapter 8. CCI applications: EPI based 207

• Ensure Event is selected, then highlight the
internalExecutionStarting event and click OK.

• Complete the connection by moving the spider cursor to the
StartSwapCommand1 bean and clicking this.

• From the pop-up menu select Connectable Features and select the
execute(CommandEvent) method. A dotted green line represents the
connection.

– After each command completes successfully the next command in the
sequence should be executed.

• Connect the executionSuccessful event of StartSwapCommand1 with
the execute(CommandEvent) method of SwapCommand1.

• Connect the executionSuccessful event of SwapCommand1 with the
execute(CommandEvent) method of EndSwapCommand1.

• Connect the executionSuccessful event of EndSwapCommand1 with
the returnExecutionSuccessful method of the navigator.

� The dotted green lines represent an incomplete connection. Double click on
each of the four dotted green lines and select Pass event data. This will
ensure the CommandEvent object is flowed between the Command beans.

The navigator is now complete. To generate the navigator select Bean ->
Save Bean. Figure 8-18 shows a completed navigator.

Figure 8-18 A completed navigator
208 Java Connectors for CICS

� You can test navigators in the EAB Test Client. To do this, from the workbench
right click on the SWAPNavigator class and select Tools -> Enterprise
Access Builder -> Launch Test Client. Further information on using this tool
is in “Testing the Command bean” on page 200.

You should create a client to run the navigator. To do this, create a new class in
the itso.cics.epi.j2ee.nav package called SWAPClient and enter the code
shown in Figure 8-19 in the main() method. Example 8-4 shows the output from
running this program.

Figure 8-19 Testing the navigator

Example 8-4 Results from the navigator client

Value 1: ABCDE has become: 12345
Value 2: 12345 has become: ABCDE

Tracing
To turn on tracing, edit the connection information in the Command bean or
navigator. Select the ConnectionFactoryConfiguration class. Specify the level
of tracing to use through setTraceLevel(). Valid tracing levels are 0 - 3:

0: RAS_TRACE_OFF Disable all tracing (except adapter
messages)

1: RAS_TRACE_ERROR_EXCEPTION Output exception trace stacks

2: RAS_TRACE_ENTRY_EXIT Output method entry and exit stack
traces

3 = RAS_TRACE_INTERNAL Output debug trace entries

public static void main(java.lang.String[] args) {
String value1 = "ABCDE";
String value2 = "12345";
try{

SWAPNavigator navigator = new SWAPNavigator();
navigator.setSWAPCommand1Op1(value1);
navigator.setSWAPCommand1Op2(value2);
navigator.execute();
System.out.println("Value 1: " + value1 + " has become: " +

navigator.getSWAPCommand1Op11());
System.out.println("Value 2: " + value2 + " has become: " +

navigator.getSWAPCommand1Op21());
} catch (RuntimeException e) {

System.out.println(e.getMessage());
}

}

 Chapter 8. CCI applications: EPI based 209

Each level of trace builds upon the previous level, so ENTRY_EXIT includes
everything in ERROR_EXCEPTION, and INTERNAL includes everything in all
the trace levels.

You specify where the trace output should go in the logWriter property. Set this
property in the Java client that calls the Command bean, making sure you set it
before the execute() method is called (Figure 8-20).

Figure 8-20 Setting the logWriter property

.

8.2.3 Migrating a CCF application
Prior to Version 4 of VisualAge for Java, the Enterprise Access Builder built
classes that adhered to the Common Connector Framework (CCF) specification.
CCF-based Records, commands, and navigators can all be migrated to the J2EE
Connector Architecture using VisualAge for Java version 4. Before migrating any
classes, we recommend you version them first.

Migrating Records and commands
The command migrator performs the following actions:

� Changes the connection information (if any was supplied) from using the
CCF-based CICSConnectionSpec class to the J2EE Connector Architecture
based ConnectionFactoryConfiguration class.

� Changes the interaction spec from the CCF-based EPIInteractionSpec class
to the J2EE Connection Architecure based EPIInteractionSpec class.

The Record migrator performs the following actions:

� Modifies the class to implement javax.resource.cci.Record and
javax.resource.cci.Streamable.

� Implements the methods that these interfaces provide.

EPIPCommand command = new EPIPCommand();
command.getCeConnectionSpec().getManagedConnectionFactory().setLogWriter(

new java.io.PrintWriter(System.out));
command.execute();

Tip: We found that the CCI trace output was not particularly useful as it only
traced the execution of methods within the CCI classes themselves.
Therefore, we suggest you use the com.ibm.ctg.client.T class if you wish to
debug your application. For details on using the T class, refer to 4.6, “Tracing”
on page 61.
210 Java Connectors for CICS

To migrate a command, right click on it and select Tools -> Enterprise Access
Builder -> Migrate Commands. The Migrate to Connector Architecture
SmartGuide will appear. You can optionally add additional commands to migrate
here. Click Finish to start the migration. If the command contains connection
information the window shown in Figure 8-21 will appear.

Figure 8-21 Migrating a command

Select EPIManagedConnectionFactory.

The following CICSConnectionSpec properties cannot be migrated:

� reapTime
� realm
� unusedTimeout
� maxConnections
� minConnections
� connectionTimeout

If any of these properties have been set a warning will be issued during the
migration. The VisualAge for Java log will list all populated properties omitted
from the migration.

Once the command migration is complete you will be asked if you wish to migrate
all associated input and output Records. You should answer Yes to this since
using CCF-based Records in a migrated Command bean will cause a
java.lang.ClassCastException to be thrown at runtime.

Migrating navigators
The navigator migrator performs a single function; it changes the connection
information from using the CCF-based CICSConnectionSpec class to the J2EE
Connector Architecure based ConnectionFactoryConfiguration class.

Note that this tool only migrates navigators. The commands and Records that the
navigator uses must be migrated separately.

To migrate a navigator do as follows:
 Chapter 8. CCI applications: EPI based 211

� Right click on it and select Tools -> Enterprise Access Builder -> Migrate
Navigators.

� The Migrate to Connector Architecture SmartGuide will appear, you can
optionally add additional navigators here to migrate.

� Click Finish to start the migration.

� When asked to select the most appropriate ManagedConnectionFactory
select EPIManagedConnectionFactory.

The migration tool will report that a number of properties could not be migrated.
These are the same properties as listed in “Migrating Records and commands”
on page 210. However, unlike the command migrator, the navigator migrator will
report on all properties it has omitted, regardless of whether they have been set.

When viewing the migrated navigator in the Visual Composition Editor, the
CICSConnectionSpec bean is not removed and replaced with the
ConnectionFactoryConfiguration bean, as you might expect. Instead the
initalize() method of the navigator is changed to ignore the values set in the
CICSConnectionSpec bean, and creates a ConnectionFactoryConfiguration
bean to use instead. Therefore, when updating connection parameters you
should not modify values in the CICSConnectionSpec bean as you would have
done before, but instead must modify the code in the initalize() method.

8.3 Connecting to secured CICS transactions
For an EPI application to be able to start secured CICS transactions it must
supply security credentials (a user ID and password) for the CICS server to
authenticate. There are two options available to do this:

� Signon to the CICS terminal before starting a transaction.

The security credentials are determined at signon using CESN or any other
signon transaction. These credentials are then used for all subsequent
authorization checks when starting other transactions on this EPI terminal. A
user ID and password should not flow with the requests that follow the signon.
This option requires the use of a signon capable terminal.

� Flow a user ID and password with each EPI request.

The user ID and password are authenticated for each request and used to
authorize each transaction started in CICS. The user can not signon to CICS.
This option requires the use of a signon incapable terminal.

We recommend you use signon incapable terminals if your application allows.
There are two main reasons for this:
212 Java Connectors for CICS

� Signing on to CICS prevents the resource adapter from controlling security,
and instead relies upon a custom LogonLogoff class you have written
yourself, which can be a security exposure if poorly written.

� If no LogonLogoff class is provided and you use signon capable terminals, the
CICS application has to manage signon. However, when using connection
pooling, the terminal returned to the pool could still have security credentials
set on it. When the connection is reallocated from the pool there is no
guarantee that the receiver of the terminal is going to change the credentials
and this could circumvent security as they are allocated a terminal with
credentials they may not be able to achieve themselves. To protect this
scenario, the terminal gets disconnected when returned to the pool. This
loses some of the performance benefit gained by pooling.

For further information on handling secure CICS transaction with the EPI refer to
7.3, “Connecting to secured CICS transactions” on page 174.

8.3.1 Signon capable terminals
For transactions that signon to CICS, the EPI resource adapter needs to know
how to perform the signon. However the resource adapter does not know how to
do this, because signon can vary on different CICS platforms, and you may have
written your own custom 3270 signon transaction. Therefore, the resource
adapter should invoke a LogonLogoff class to determine how to sign on to CICS.

You must write your own LogonLogoff class that implements the
com.ibm.connector2.cci.LogonLogoff interface. This interface defines two
methods that must be implemented; logon() and logoff(). The logon() method
must drive the signon procedure you wish to use. A Subject object is passed to
the logon() method from which you can obtain the user ID and password to use.
The logoff() requires only a dummy implementation, because it is never called.

A sample LogonLogoff class is shipped with the CICS Transaction Gateway
V4.0.1. It is called com.ibm.ctg.samples.j2ee.CICSCESNLogon and it extracts the
user ID and password provided in the Subject object, and uses these values with
the CESN transaction to signon.

When the LogonLogoff class is invoked, the resource adapter will pass it the
security credentials to be used. In a non-managed environment, the security
credentials used will be based in the same order of precedence as described in
8.3.2, “Signon incapable terminals” on page 214.
 Chapter 8. CCI applications: EPI based 213

To specify the LogonLogoff class to use, call the EPIManagedConnectionFactory
method setLogonLogoffClass(), specifying the package and class name of the
LogonLogoff class to use as a String. If you are using the EAB, use the
Command Editor to edit ConnectionFactoryConfiguration. Expand the
managedConnectionFactory property to set the logonLogoffClass property.

Refer to the appropriate CICS Transaction Gateway: Gateway Programming
manual for your platform for more information on writing a LogonLogoff class.

8.3.2 Signon incapable terminals
There are three ways in which security credentials can be passed to the resource
adapter. They are listed in order of precedence.

1. Server supplied credentials

In a managed environment, the J2EE server can provide security credentials.
WebSphere Application Server Advanced Edition V4 does not currently
support this.

2. ConnectionSpec supplied credentials

The EPIConnectionSpec class can set the user ID and password to use. We
recommend using this method when you are starting multiple EPI
transactions that require different user IDs and passwords.

To do this manually with the CCI, create an instance of EPIConnectionSpec
and use the setUserName() and setPassword() methods. Pass the
EPIConnectionSpec object as a parameter in the getConnection() method of
the ConnectionFactory.

When using Enterprise Access Builder, use the Command Editor to edit
ConnectionFactoryConfiguration. Set the connectionSpec property to
EPIConnectionSpec. Expand the connectionSpec property to set the userName
and password properties.

3. Deployed security credentials

The EPIManagedConnectionFactory class can set the user ID and password to
use. We recommend using this method when you want to use a single user ID
and password at deployment time for a connection.

To do this manually with the CCI use the setUserName() and setPassword()
methods of EPIManagedConnectionFactory.

When using the Enterprise Access Builder, use the Command Editor to edit
ConnectionFactoryConfiguration. Expand the managedConnectionFactory
property to set the userName and password properties.
214 Java Connectors for CICS

To use any of the above options, you must set the EPIManagedConnectionFactory
class to specify you intend to work with a signon incapable terminal. The default
assumes a signon capable terminal. Set the setSignonType() method to an
Integer value of 1 to represent signon incapable. Alternatively, in Enterprise
Access Builder use the Command Editor to edit
ConnectionFactoryConfiguration. Expand the managedConnectionFactory
property to set the signonType property to 1.
 Chapter 8. CCI applications: EPI based 215

216 Java Connectors for CICS

Part 4 Appendices

Part 4
© Copyright IBM Corp. 2002 217

218 Java Connectors for CICS

Appendix A. Configuring the CICS
connectors in VisualAge for
Java

If you intend to use VisualAge for Java to develop applications like those shown
in this book, you must install and configure it correctly. This appendix explains
how we setup VisualAge for Java to support J2EE Connector Architecture
application development. By configuring VisualAge for Java in this way you will
also be able to use the updated version 4.0.1 CICS Transaction Gateway
classes when creating applications that use the ECI or EPI interfaces directly.

A

© Copyright IBM Corp. 2002 219

A.1 Installing VisualAge for Java
We began by installing VisualAge for Java V4.0 Enterprise Edition as this version
contains the required support for the J2EE Connector Architecture. When
installing VisualAge for Java, you must install the Enterprise Access Builder
(EAB) support by choosing the following install option Transactions Access
Builder.

If you previously installed VisualAge for Java, but did not install the necessary
options, you can still add them by modifying your installation in the following way:

� Version any packages and projects in your workspace and then exit
VisualAge for Java.

� Run setup.exe located in the root directory of the VisualAge for Java
installation CD to start the Installer.

� Choose the Modify option to change your installation and click Next.
� Install the necessary extras by clicking on the option name and choosing This

feature will be installed on local hard drive as shown in Figure A-1.

Figure A-1 Adding options to a VisualAge for Java installation

Note: Because we wanted to be able to test servlets, JSPs, and enterprise
beans, we also installed the WebSphere Test Environment by adding a further
installation feature called EJB/JSP Development Environment
220 Java Connectors for CICS

A.2 Configuring VisualAge for Java
Once we installed VisualAge for Java with the Enterprise Access Builder, we then
added and configured support for the J2EE Connector Architecture. We
performed the following steps:

� Updated the EAB to support the J2EE Connector Architecture
� Updated the following connector projects with classes from CTG V4.0.1

a. J2EE Connector Architecture project
b. Connector CICS project

A.2.1 Updating the Enterprise Access Builder
An updated version of the EAB that supports the J2EE Connector Architecture is
supplied with the beta version of the J2EE Connectors, found on the VisualAge
for Java install CD. Information about the J2EE Connector Architecture support
is contained in the readme file on the install CD in the following subdirectory:

extras\BetaJ2EEConnectors\readme.eab

The following steps show how to install the required EAB enhancements.

1. Ensure that all of your projects or packages in the workspace are versioned.

2. Exit VisualAge for Java.

3. Run one of the following setup programs, as appropriate for your system,
from the VisualAge for Java install CD and follow the installation steps.

– extras\BetaJ2EEConnectors\NT\Setup.exe
– extras\BetaJ2EEConnectors\W2000\Setup.exe

4. When the setup program has completed, start VisualAge for Java

5. Delete any of the following projects that may exist in your workbench. The
new versions cannot be added to the workspace until the old versions have
been removed.

Note: Installing the Beta J2EE Connectors provides two components. First,
the EAB tools are enhanced to support J2EE Connector Architecture
compliant Records and session beans. Second, classes are provided that
implement the beta (proposed final draft version 2) of the J2EE Connector
Architecture Specification 1.0.

The J2EE Connector Architecture Specification has now been updated from
proposed final draft to final version 1.0, and so these beta level classes must
be updated after the EAB has been updated. CICS Transaction Gateway
V4.0.1 supplies 1.0 specification classes. We show how we used these to
update our workspace in the next section.
 Appendix A. Configuring the CICS connectors in VisualAge for Java 221

– Connector CICS
– IBM Common Connector Framework
– IBM Enterprise Access Builder Library
– IBM Enterprise Access Builder Samples
– IBM Enterprise Access Builder WebSphere Samples
– IBM Java Record Library

6. Choose File -> Quick Start -> Features -> Add Feature and then add:

– IBM Enterprise Access Builder Library 4.0

7. Your workbench now contains version 4.0 of the EAB, which supports the
J2EE Connector Architecture.

A.2.2 Updating the connector projects with 1.0 specification classes
Now that you have successfully added support for the J2EE Connector
Architecture to the EAB you must update the beta classes to the final 1.0
specification. Your workspace may contain one or both of the following projects
which must be updated, depending on what features you previously added to
your VisualAge for Java workspace:

� J2EE Connector Architecture
� Connector CICS

The 1.0 specification classes that we used for these updates are supplied by
version 4.0.1 of the CICS Transaction Gateway. You will need to import these
classes into your workspace from the classes subdirectory of a CTG V4.0.1
installation. Therefore, you must have access to a CTG V4.0.1 installation to
perform this update. We installed CTG V4.0.1 onto the same machine that we
installed VisualAge for Java on, but you could also obtain the necessary files
from any installation of CTG V4.0.1

Updating the J2EE Connector Architecture project
If you have followed the instructions to this point, your workspace will currently
contain a project entitled J2EE Connector Architecture with a version of
[Proposed Final Draft 2] 1.0. The following steps show how we updated this
project to 1.0 specification by importing new classes into the workspace:

1. Select the J2EE Connector Architecture project in the VisualAge for Java
workbench.

2. Choose File -> Import from the VisualAge for Java workbench. Select Jar file
as the import source.

3. Specify the full path to the file connector.jar in the Filename box. The JAR
file is found in the classes subdirectory of a CTG V4.0.1 installation. In our
example this was C:\Program Files\IBM\IBM CICS Transaction
Gateway\classes\connector.jar
222 Java Connectors for CICS

4. Ensure that the project to import to is J2EE Connector Architecture and set
the remaining import options as shown in Figure A-2

Figure A-2 Updating VisualAge for Java classes

5. Click Finish to import the new classes.

6. We recommend that you now version the project and its classes. We right
clicked on the J2EE Connector Architecture project and selected Manage
-> Create Open Edition.

7. Right click on the project again and select Manage -> Version Click One
Name from the resulting dialog box, and type 1.0 into the textbox. Click OK.
Your workspace should now contain the project J2EE Connector Architecture
with a version number 1.0
 Appendix A. Configuring the CICS connectors in VisualAge for Java 223

Updating the Connector CICS project
Updating the Connector CICS project is slightly different from the previous two
project updates. First, your workspace may already contain one, or even two
projects, Connector CICS and Connector CICS Beta, depending on if you
previously installed the CICS Connector. Second, we found that you must delete
these existing projects from the workspace before importing files for the update
to work correctly; importing into the existing projects will not work. Finally, the
Connector CICS classes are found in more than one JAR file so multiple imports
must be performed. In addition to these changes, the Connector CICS update
also involves importing some Java Beans to the Visual Composition Editor
palette, which can be used to visually construct a class. The following steps show
how we imported the new classes and updated our workspace.

1. Start the VisualAge for Java workbench.
2. Delete the following projects if they exist in your workspace:

– Connector CICS
– Connector CICS Beta

Figure A-3 Importing J2EE Connector for CICS classes error message

3. Select File -> Import from the VisualAge for Java workbench. Select Jar file
as the import source.

Note: If you do not remove the old Connector for CICS classes from the
workspace, you will receive an error while importing the new CTG V4.0.1
classes. If you see an error message like the one shown in Figure A-3 then
your workspace contained old CTG classes before you tried to import the
new ones. If this happens, check to see if you removed the two projects
from the workspace and ensure that there are no packages beginning with
com.ibm.ctg elsewhere in the workspace.

You can find these packages by right clicking on the projects view of your
workspace and selecting Go To -> Packages. Selecting the package
name will take you to its location in the workspace. Once you have
removed these packages, start this step again and you will be able to
successfully import the new classes.
224 Java Connectors for CICS

4. Specify the full path to the file ctgclient.jar in the Filename box. The JAR
file is found in the classes subdirectory of a CTG V4.0.1 installation. In our
example this was C:\Program Files\IBM\IBM CICS Transaction
Gateway\classes\ctgclient.jar

5. Enter the project name as Connector CICS and once again set the remaining
import options as shown in Figure A-2.

6. Click Finish to import the new classes.

7. At this point you will be asked to modify the bean palette used by the Visual
Composition Editor for visually composing applications using Java Beans.

– Add a new category to the palette by clicking the New Category button
and name the new category CICS.

– Now select the checkboxes for all of the new beans and ensure that the
CICS category is highlighted.

– Click the Add to Category button.
– Your screen should look like that shown in Figure A-4. Click OK to

complete the import.

Figure A-4 Adding EPI beans to the palette

8. Now import cicsj2ee.jar from the same location as the previous JARs into
the Connector CICS project by following the same procedure used to import
ctgclient.jar. This time you do not need to create a new category for the
additional beans. Select all the checkboxes for the additional beans as before
and highlight the existing CICS category. Click Add to Category and then
OK.

9. Import two further JAR files, screenable.jar and ctgserver.jar, from the
same location as the previous ones into the same Connector CICS project.
Neither of these JARs will require you to further modify the bean palette.
 Appendix A. Configuring the CICS connectors in VisualAge for Java 225

10.Now, we recommend that you version the project and its classes. Right click
on the Connector CICS project and choose Manage -> Version. Select One
Name from the resulting dialog box and type 4.0.1 into the text box. Click OK.
Your workspace should now contain project Connector CICS with a version
number 4.0.1

Your VisualAge for Java is now configured correctly, so that you to begin building
applications that use the J2EE Connector Architecture for connecting to CICS.
Additionally, you can now use the version 4.0.1 CTG classes for ECI and EPI
applications. Your workspace should contain the following projects and version
numbers:

� IBM Enterprise Access Builder Library 4.0
� J2EE Connector Architecture 1.0
� Connector CICS 4.0.1
226 Java Connectors for CICS

Appendix B. Data conversion

When writing Java applications to invoke CICS programs, data conversion is a
key issue since CICS, which runs on IBM’s S/390 processors, grew up in an
EBCDIC world, whereas Java is based on Unicode which is derived from ASCII
character sets that are used in the UNIX and PC worlds.

In this appendix, we provide information on three different strategies you can use
to perform data conversions:

� Conversion within Java
� Conversion by CICS: DFHCNV templates
� EAB and Java Record Framework

Each of these options has its own advantages and drawbacks, and we will
discuss each of these in the following sections.

B

© Copyright IBM Corp. 2002 227

B.1 Conversion within Java
If you are an avid Java programmer, the thought of writing you own data
conversion code may appeal to you. Even if it does not, understanding how the
data needs to be converted from the Unicode used within Java will be a real help.

Character data
All Java strings are stored in Unicode, which is a double byte character set, which
is similar to ASCII in that the trailing byte maps to the ASCII code point for the
common ASCII characters. Therefore, the character A usually represented by the
ASCII code point X ‘41’ is represented in Unicode by X ‘0041’.

The COMMAREA flowed to CICS in an ECIRequest object has to be a Java byte
array (composed of single byte characters), whereas in Java, character data is
usually stored in a String which is Unicode. Each time you convert from a String
to a byte array you convert each character from Unicode to a single byte
character, and therefore, you need to specify the encoding parameter to ensure
consistent results.

When converting from a String to a byte array use the getBytes() method on the
String class, passing the encoding of the byte array you wish to use. In this
example we specify the EBCDIC code page IBM037.

byte abCommarea[] = new byte[27];
abCommarea = "abcd".getBytes("IBM037");

When converting the byte array to a String specify the correct encoding of the
data on the String constructor as follows:

String strCommarea = new String(abCommarea,"IBM037");

This technique means that on the way into CICS data is converted from Unicode
to EBCDIC within the JVM, and similarly on the way back data is converted from
EBCDIC to Unicode. No data conversion is required within CICS (Figure B-1).

Figure B-1 Code page aware servlet: EBCDIC input to CICS

JVM CICS TS
EBCDIC

byte array
CICS

program

Unicode
(String)

EBCDIC
byte array

Unicode
(String)

EBCDIC

EBCDIC
228 Java Connectors for CICS

However, there is an alternative, which is to convert the data to ASCII within the
JVM, and then convert from ASCII to EBCDIC within CICS (Figure B-2). This is
not as inefficient as it sounds, since data conversion from Unicode to ASCII is an
efficient operation in Java, as it involves only the removal of the high-order byte,
whereas conversion to EBCDIC requires a table lookup. This means the high
cost of EBCDIC conversion can be transferred to CICS, therefore, potentially
improving performance within the JVM.

Figure B-2 Code page-aware servlet — ASCII input to CICS

In this case you would use an ASCII code page such as 8859_1 when creating
the byte array:

byte abCommarea[] = new byte[27];
abCommarea = "abcd".getBytes("8859_1");

And having received the byte array back from CICS, convert to a String as
follows:

String strCommarea = new String(abCommarea,"8859_1");

Attention: Specifying an encoding is particularly important if you port your
code from Intel to S/390. This is because if you do not specify an encoding,
then the default platform encoding will be used, and this will vary between
ASCII and EBCDIC platforms.

JVM CICS TS

ASCII
byte array

CICS
program

DFHCNV
template EBCDIC

EBCDICDFHCNV
template

Unicode
(String)

ASCII
byte array

Unicode
(String)

ASCII

ASCII
 Appendix B. Data conversion 229

Numeric data
If you wish to flow numeric data to CICS from a Java application then you may
think that this is a relatively simple affair, since both Java and OS/390 store
integers in big-endian format. However, you need to consider that all data passed
to CICS must flow as byte array. Therefore, it is necessary to convert all integer
values into a byte array before they can be passed to CICS.

The following code in Figure B-3 provides a method getByteData() to convert a
four byte integer to the corresponding byte array. The int value is the value of
the integer to be converted, and the length is assumed to be 4 bytes, and so will
only work for 4 byte integers such as a Java int or a COBOL PIC S9(8) COMP.

Figure B-3 Method getByteData()

The logic in Figure C-3 is as follows:

� 1 Instantiate a ByteArrayOutputStream object. Then instantiate a
DataOutputStream object, passing the ByteArrayOutputStream in the
constructor.

� 2 Use the DataOutputStream writeInt() method to write the int value to the
underlying output stream as four bytes, high byte first.

� 3 Use the ByteArrayOutputStream toByteArray() method to create a byte
array from the original int value.

Tip: The COBOL data type PIC S9(8) COMP is a 4-byte (full-word) signed
numeric data-type. It can store integers ranging in value from -99999999 to
+99999999, for further details refer to Table B-1 on page 240.

public static byte[] getByteData(int value) {
 byte[] reply = null;
 int length = 4;
 try {
1 java.io.ByteArrayOutputStream bytes = new java.io.ByteArrayOutputStream(length);
 java.io.DataOutputStream data = new java.io.DataOutputStream(bytes);

2 data.writeInt(value);

3 reply = bytes.toByteArray();
 data.close();
 } catch (java.io.IOException io) {
 }
 return reply;
}

230 Java Connectors for CICS

The following code in Figure B-4 provides the method getIntData() to convert a
byte array, into a 4 byte integer. The int offset is the offset into the byte array of
the integer, the length is assumed to be 4 bytes.

Figure B-4 Method getIntData()

The logic in Figure B-4 is as follows:

� 1 Create a new byte array raw of 4 bytes to hold the integer for conversion.

� 2 Populate the array raw with 4 bytes from the commarea array using the
arraycopy() method.

� 3 Instantiate a ByteArrayInputStream. Then instantiate a DataInputStream,
passing the ByteArrayInputStream object in the constructor.

� 4 Use the DataInputStream readInt() method to get the integer value from
the byte array passed as input.

A sample application IntConverter that uses these methods to convert a byte
returned from CICS into an integer, is provided in the package
itso.cics.eci.conversion with this book. For details on how to obtain this code,
refer to Appendix D, “Additional material” on page 261.

public static int getIntData(byte[] commarea, int offset) {

 int length = 4;
1 byte[] raw = new byte[length];
2 System.arraycopy(commarea, offset, raw, 0, length);

 int reply = 0;
 try {

3 java.io.ByteArrayInputStream bytes = new java.io.ByteArrayInputStream(raw);
 java.io.DataInputStream dataStream = new java.io.DataInputStream(bytes);

4 reply = dataStream.readInt();

 dataStream.close();
 } catch (java.io.IOException io) {
 System.out.println("Exception" + io);
 }
 return reply;
}

 Appendix B. Data conversion 231

B.2 Conversion within CICS: DFHCNV templates
ECI applications use the facilities of the CICS mirror program (DFHMIRS) to link
to the specified user program, passing a buffer known as the COMMAREA for
input and output. The CICS mirror program can invoke the services of the data
conversion program (DFHCCNV) to perform the necessary conversion of the
inbound and outbound COMMAREA (Figure B-5).

Figure B-5 CICS Transaction Gateway: ECI data conversion

Only if DFHCCNV finds a conversion template in the DFHCNV table, which
matches the program name, will it perform code page translation for the
COMMAREA associated with the ECI request. Templates must specify either
character or numeric data as they are dealt with differently by the conversion
program DFHCNV.

Character data
To convert character data it is necessary to create a DATATYP=CHARACTER
template as shown in Figure B-6.

Figure B-6 Sample DFHCNV character conversion template

user
application

program

CICS region on OS/390 OS/390, AIX, Solaris, Windows,

Web Browser

mirror
program C

O
M
M
A
R
E
A

CTG ECI
(or EXCI)

DFHCCNV

DFHMIRS

 Linux/390, HP-UX

 DFHCNV TYPE=INITIAL,CLINTCP=8859-1,SRVERCP=037
 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=ECIDCONV
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6, x
 LAST=YES
 DFHCNV TYPE=FINAL
 END
232 Java Connectors for CICS

� The SRVERCP on the TYPE=INITIAL statement should represent the EBCDIC
code page in which the data is stored within CICS.

� The CLINTCP on the TYPE=INITIAL statement should be the default code page
for client requests, but this is usually overridden by information flowed by from
the CTG or CICS Universal Client, which is in turn determined from the code
page of the client machine.

� The TYPE=ENTRY statement should specify RTYPE=PC for programs, and the
name of the program in RNAME.

� The TYPE=FIELD statement should specify the DATATYP=CHARACTER for
character based data. DATALEN should be the maximum length of the
COMMAREA that you require to be translated.

Flowing of code page information
The CICS DFHCCNV program dynamically chooses the correct ASCII code
page for its conversions based on information flowed to CICS from the CTG
client daemon. Each ECI request flowed to CICS contains the code page
information in the ECI header. This information is obtained from the CTG.INI
parameters CCSID and USEOEMCP. USEOEMCP signifies that the code page in use by
the operating system should be used. On Windows this code page can be
determined using the CHCP command. The CCSID parameter can be used to
override the USEOEMCP setting with a code page of your choice.

CicsCpRequest object
The CTG provides a request object, CicsCpRequest, to query the CTG about
which code page it will specify in the ECI header. This provides a mechanism to
allow proper data conversion within the Java application. The code in Figure B-7
details use of the CicsCpRequest object.

Figure B-7 Sample code for CicsCpRequest

try {
1 JavaGateway jg= new JavaGateway();
 jg.setURL("tcp://gunner:2006");
 jg.open();

2 CicsCpRequest cpreq = new CicsCpRequest();
3 jg.flow(cpreq);
4 String jgCodePage = cpreq.getClientCp();
 System.out.println("CICS code page: " + jgCodePage);
 jg.close();
}catch (IOException ioe) {

System.out.println("(Main) Handled exception: " + ioe.toString());
}

 Appendix B. Data conversion 233

The logic in Figure C-7 is as follows:

� 1 Create a JavaGateway object, configure it and open the connection.

� 2 Create a CicsCpRequest object.

� 3 Flow the request to the CTG.

� 4 After flowing the request invoke the getClientCp() method on the
CicsCpRequest request object to obtain the ASCII code page in use by the
worksation on which the CTG is running.

Having discovered the code page in use by the CTG, this should then be used as
the ASCII code page when creating an ASCII byte array to flow to CICS. This
ASCII byte array must then be subsequently converted to EBCDIC in CICS using
a DFHCNV template.

The code in Figure B-8 illustrates how to use the CicsCpRequest object to query
the CTG code page, and uses this information to create an ASCII byte array to
flow to CICS in an ECI request. This code can be found as a working sample
called CodePageCall, and it is provided in the itso.cics.eci.conversion
package that comes with the additional material in this book.
234 Java Connectors for CICS

Figure B-8 Using the CicsCpRequest code page

The logic in Figure B-8 is as follows:

� 1 Create a CicsCpRequest object, to discover the CTG code page.

� 2 Create a byte array abCommarea.

� 3 Use the code page jgCodePage as the encoding when initializing the byte
array with a string of data.

� 4 Create an ECIRequest object and use this to flow the COMMAREA to CICS.

� 5 Retrieve the COMMAREA returned from CICS, and use the code page
jgCodePage when decoding the byte array into a string.

try {
 JavaGateway jg = new JavaGateway();
 jg.setURL("tcp://gunner:2006");
 jg.open();

1 CicsCpRequest cpreq = new CicsCpRequest();
 jg.flow(cpreq);
 String jgCodePage = cpreq.getClientCp();
 System.out.println("CICS code page: " + jgCodePage);
2 byte abCommarea[];
3 abCommarea = ("---------------------------").getBytes(jgCodePage);

4 ECIRequest eciRequest;
 eciRequest = new ECIRequest("SCSCPAA6", // CICS Server
 "null", // userid
 "null", //password
 "ECIPROG", // Program name
 abCommarea, // Commarea byte array
 ECIRequest.ECI_NO_EXTEND, //extend mode
 ECIRequest.ECI_LUW_NEW); //LUW token
 jg.flow(eciRequest);

5 String strCommarea = new String(abCommarea, jgCodePage);
 System.out.println("COMMAREA returned: " + strCommarea);

}catch (IOException ioe) {
System.out.println("Handled exception: " + ioe.toString());
}

 Appendix B. Data conversion 235

Numeric data
The representation of numeric (or integer data) is different on different computer
systems. S/390 and RISC platforms use the big-endian format where the most
significant byte (big end) is stored first (at the lowest storage address). Thus the
unsigned numeric value of 1 is stored as X’00 01’.

Intel based machines use the opposite format, called little-endian, whereby the
most significant byte is stored last (at the highest storage address). Therefore,
the unsigned numeric value of 1 is stored as X’01 00’.

DFHCNV supports the conversion of 2 and 4 byte numeric data from little-endian
format to big-endian. This is achieved using DATATYP=NUMERIC, such as shown in
Figure B-9. A DATATYP=BINARY entry signifies the data is already in big-endian
format and does not need any conversion. To convert 8 byte numeric values,
packed decimal, or floating point values, it is necessary to use a different
technique such as the Java Record Framework (see Figure B-10 on page 237) or
the CICS user-replaceable conversion program DFHUCNV.

Figure B-9 Sample DFHCNV numeric conversion template

The template shown Figure B-9 is similar to the character template shown in
Figure B-6 on page 232, except for the following differences:

� The TYPE=FIELD statement should specify the DATATYP=NUMERIC.

� OFFSET is the starting position of the integer within the commarea byte array.

� DATALEN should be the length of the integer you require translated (2 or 4
bytes). Each integer must have its own template specified.

Attention: Although Intel platforms store integers in little-endian format Java
uses a big-endian format. Therefore, you do not need to convert from
little-endian to big-endian when passing data from your Java to CICS.

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=ECIDCONV
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6
 DFHCNV TYPE=FIELD,OFFSET=6,DATATYP=NUMERIC,DATALEN=2, x
 LAST=YES

Important: If you code a TYPE=BINARY DFHCNV template, data flowed from
a Java application through a Windows CTG will still be converted from
little-endian to big-endian because CICS overrides the TYPE-BINARY field
since it thinks the data has originated on a Windows system, and therefore,
treats it as if it were little-endian data.
236 Java Connectors for CICS

B.3 EAB and the Java Record Framework
The Enterprise Access Builder (EAB) feature of VisualAge for Java consists of
set of SmartGuides and helper classes that can be used with connectors such as
the CICS connector which allows you to seamlessly and easily access the data
within the Enterprise Information System (such as CICS). Within the EAB, is the
Java Record Framework, which is a powerful utility for marshalling data. This
provides a fine-grained set of controls for marshalling all the possible
CICS-COBOL data types from Java to S/390 format and vica-versa.

Using the EAB means that the programmer no longer has to concern them self
with the offset, encoding, and data marshalling for each field in a COMMAREA.
Instead, all the fields can now be correctly accessed using supplied getter and
setters.

The Create Record from Record Type SmartGuide is used to set the data
properties of the Record bean. When using the EAB Record SmartGuide, you
are presented with a dialog that allows you to set the numeric data type, the code
page, and the machine type for the Record (Figure B-10).

Figure B-10 Properties of the Record attributes beans

In the dialog shown in Figure B-10, you are prompted for five different property
values that reflect the format of data in the COBOL record.

Floating Point Format
This is the byte representation of internal floating point numeric data types (such
as COMP-2 COBOL data types). Select IBM for S/390 format, otherwise select
IEEE.
 Appendix B. Data conversion 237

Remote Integer Endian
This is the format of 2 and 4 byte binary integers, (such as PIC S9(4) COMP,
PIC S9(8) COMP and PIC 9(8) COMP. You should select Big Endian if you want to
pass big-endian data to your CICS system. You should select Little Endian if you
want to pass little-endian data. If you pass little-endian data to a CICS TS region
on OS/390, you must convert it back to big-endian data by defining
TYPE=NUMERIC templates in your DFHCNV macro.

Endian
This controls the format of all binary data types, including 2 and 4 byte integers,
as well as 8 byte integers, such as PIC 9(18) COMP, and internal decimal
(packed decimal) data types such as PIC S9(5) COMP-3. We recommend that you
select Big Endian if you are sending data to a big-endian system, such as a
CICS TS region on OS/390 (or a CICS AIX region). If you select Little Endian,
this will disable conversion of all integers (including 2 and 4 byte integers), and
should only be used if sending data to a CICS system running on an Intel
platform (Windows or OS/2).

Code Page
This is the code page of character data, (such as PIC X or PIC A data types), and
external floating point data (such as PIC 9(2).9(2)E+99). You can specify any
code page listed in the JDK internationalization specification. You should use an
EBCDIC code page (such as IBM037) if you wish to pass EBCDIC data to CICS;
or you should use an ASCII code page (such as 8859_1) if you wish to pass
ASCII data to CICS. If you pass ASCII data to a CICS TS region running on
OS/390, you must convert this to EBCDIC within CICS by defining
DATATYP=CHARACTER templates in your DFHCNV macro.

Machine
This is the target machine type and controls data conversion for external decimal
types (such as PIC S9 DISPLAY). You can specify the values MVS,
MVSCUSTOM, NT, OS2, or AIX. You should use the value MVS for passing data
to CICS on S/390, as this property is used to correctly convert the sign byte.

The property MVSCUSTOM is a special feature that handles conversion for
external decimal types, which have already been converted from ASCII to
EBCDIC by the CICS DFHCCNV (using a DFHCNV DATATYP=CHARACTER
template). This is useful if you have a large character based COMMAREA, and
wish to use DFHCNV templates, but also need to pass a few numeric data types
within the COMMAREA.
238 Java Connectors for CICS

The values shown in Figure B-10 on page 237 represent the suggested values to
use when passing data from an Intel Java client to a CICS TS region running on
OS/390. Using these values will delegate all data conversion to the Java client. If
you wish to use DFHCNV to convert character data, you should specify the Code
Page property as an ASCII code page (such as 8859_1). If you wish to use
DFHCNV to convert numeric data (2 and 4 byte integers), you should specify the
Remote Integer Endian property as Little Endian, and the Endian property as Big
Endian.

The output from this dialog is stored in the constructor method for the Record
bean (see Figure B-11), and determines how the getter and setter methods will
convert the data to be flowed to the CICS system. This means that the data is not
converted until the getter or setter methods are actually called, and provides
more optimal performance, since data conversion can be an expensive operation
in Java.

Figure B-11 Constructor for Record bean

public EcidconvRecord()
 throws RecordException
 {
 try {
 if (this.initialRecord == null) {
 com.ibm.ivj.eab.record.cobol.CobolRecordAttributes attrs = new
com.ibm.ivj.eab.record.cobol.CobolRecordAttributes(
 "037",
 com.ibm.record.IRecordAttributes.BIGENDIAN,
 com.ibm.record.IRecordAttributes.BIGENDIAN,
 com.ibm.record.IRecordAttributes.IBMFLOATINGPOINTFORMAT,
 com.ibm.ivj.eab.record.cobol.CobolRecordAttributes.MVS,
 com.ibm.ivj.eab.record.cobol.CobolRecordAttributes.VACOBOL);
 this.setRecordAttributes(attrs);
 this.setRecordType(new
CustomRecordType(itso.cics.eci.conversion.EcidconvRecord.class,52));
 this.setRawBytes(new byte[52]);
 this.setInitialValues();
 } else {
 ...
 } catch (Exception e) {
 throw new RecordException(e.getMessage());
 }
 }
 Appendix B. Data conversion 239

The following Table B-1 summarize each EAB property, and the COBOL data
types that each property affects.

Table B-1 COBOL data types and EAB Record attributes

These attributes were calculated using a simple COBOL program (ECIDCONV)
and an associated Java application (itso.cics.eci.conversion.EcidconvTest)
and Record (itso.cics.eci.conversion.EcidconvRecord). Instructions on how
to download these can be found in Appendix D, “Additional material” on
page 261.

For further information on COBOL data types refer to the VisualAge for COBOL
Programming Guide, SC26-9050.

COBOL data type COBOL examples Numeric value of +1 Record
attribute

Character data PIC X or PIC A n/a Code Page

External decimal PIC S9(4) DISPLAY F0 F0 F0 C1 Machine

Binary (2 or 4 byte)
signed or unsigned

PIC S9(4) BINARY
PIC S9(8) BINARY
PIC 9(4) BINARY
PIC 9(8) BINARY

00 01
00 00 00 01
00 01
00 00 00 01

Endian

Binary (8 byte)
signed or unsigned

PIC 9(18) BINARY 00 00 00 00 00 00 00 01 Remote
Integer
Endian plus
Endian

Internal (packed) decimal PIC S9(4) COMP-3 00 00 00 1C Remote
Integer
Endian plus
Endian

Internal floating point COMP-1
COMP-2

41 10 00 00
41 10 00 00 00 00 00 00

Floating Point
Format

External floating point PIC 9(2).9(2)E+99 4E F1 F0 4B F0 F0 C5 60 F0 F1 Code Page
240 Java Connectors for CICS

Appendix C. Sample CICS programs

In this appendix, we provide the CICS source code for the following CICS
programs applications that we used as samples in this book.

ECIADDER This is a COMMAREA based program that takes a
temporary storage queue and an integer as input, and
adds the integer to the existing value in the queue.

ECIPROG This is a simple COMMAREA based application that
returns a 27 byte character string from the CICS region.

EPIPROG This is a simple 3270 application that displays a single
BMS map.

SWAP This is a 3270 pseudo-conversational application that
provides a BMS interface, allowing the user to enter
numbers that are then swapped between display fields.

TRADER This is a complex pseudo-conversational CICS
application with a 3270 menu front-end. It simulates the
buying and selling of shares in different companies. It has
both a 3270 presentation interface and a COMMAREA
based call interface.

C

Important: For details on how to download the latest copies of these
additional materials refer to Appendix D, “Additional material” on page 261.
© Copyright IBM Corp. 2002 241

C.1 ECIADDER
This is a COMMAREA based program that takes as input a full-word integer and
temporary storage queue. It then reads the contents of the queue, takes the
integer input and adds the value to the existing value in the queue. This
application was used for illustrating extended logical units of work in Chapter 4,
“ECI and ESI applications” on page 35, and Chapter 5, “CCI applications: ECI
based” on page 71. The source code is shown in Figure C-1.

Example: C-1 ECIADDER COBOL program

 IDENTIFICATION DIVISION.

 PROGRAM-ID. ECIADDER.

 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 RESP PIC S9(8) BINARY.
 01 RESP-SAVE PIC S9(8) BINARY.
 01 APPLID PIC X(8).
 01 ITEM PIC S9(4) BINARY.
 01 DATA-Q-BIN1 PIC S9(8) BINARY VALUE ZERO.
 01 Q-COUNT PIC S9(8) BINARY VALUE ZERO.
 01 DATA-IN-BIN PIC S9(8) BINARY.

 *COMMAREA IS 12 BYTES
 01 COMMAREA-RETURN.
 03 DATA-OUT PIC S9(3) DISPLAY SIGN IS
 LEADING SEPARATE CHARACTER.
 03 Q-RC PIC ZZZ9 DISPLAY.
 03 FILLER-1 PIC X(4) VALUE SPACE.

 LINKAGE SECTION.

 *COMMAREA IS 12 BYTES, 4 BYTE NUMERIC, 8 BYTE TSQ
 *DATA-IN IS 3 BYTE FIELD WITH LEADING SIGN
 01 DFHCOMMAREA.
 03 DATA-IN PIC S9(3) DISPLAY SIGN IS
 LEADING SEPARATE CHARACTER.
 03 QNAME PIC X(8).

 PROCEDURE DIVISION.

 EXEC CICS ASSIGN APPLID(APPLID)
 END-EXEC.
242 Java Connectors for CICS

 MOVE DATA-IN TO DATA-IN-BIN.

 Q-WRITE.
 MOVE 1 TO ITEM.
 EXEC CICS READQ TS
 QUEUE(QNAME)
 ITEM(ITEM)
 INTO(DATA-Q-BIN1)
 RESP(RESP)
 END-EXEC.
 MOVE RESP TO RESP-SAVE.

 IF RESP-SAVE = DFHRESP(QIDERR) THEN
 EXEC CICS WRITEQ TS
 QUEUE(QNAME)
 FROM(DATA-IN-BIN)
 LENGTH(LENGTH OF DATA-IN-BIN)
 ITEM(ITEM)
 RESP(RESP)
 END-EXEC.

 IF RESP-SAVE = DFHRESP(NORMAL) THEN
 ADD DATA-IN-BIN TO DATA-Q-BIN1
 MOVE 1 TO ITEM
 EXEC CICS WRITEQ TS
 QUEUE(QNAME)
 REWRITE
 FROM(DATA-Q-BIN1)
 LENGTH(LENGTH OF DATA-Q-BIN1)
 ITEM(ITEM)
 RESP(RESP)
 END-EXEC.

 MOVE RESP TO Q-RC.
 MOVE DATA-Q-BIN1 TO DATA-OUT.
 PERFORM CICS-RETURN.

 CICS-RETURN.
 MOVE COMMAREA-RETURN TO DFHCOMMAREA.
 EXEC CICS RETURN
 END-EXEC.

 EXIT.
 Appendix C. Sample CICS programs 243

C.2 ECIPROG
This is a very simple COMMAREA based application. It merely returns a 27 byte
string containing the date, time and APPLID from the CICS region. It is a useful
application for testing simple calls to CICS.

Optionally it also takes input, and will either delay for 30 seconds, abend, or
shutdown CICS. Depending on whether the first character in the input
COMMAREA is D, S, or A. It was used in Chapter 5, “CCI applications: ECI
based” on page 71. The COBOL source code is shown in Figure C-2.

Example: C-2 ECIPROG COBOL program

 IDENTIFICATION DIVISION.

 PROGRAM-ID. ECIPROG.

 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 RESP PIC S9(8) BINARY.
 01 ABSTIME PIC X(8).
 01 DELAY-TIME PIC S9(8) COMP VALUE 1.
 01 ABEND-CODE PIC X(4) VALUE 'ECIP'.
 01 COMMAREA-IN.
 03 ACTION1 PIC X(1).
 03 FILLER-1 PIC X(26) VALUE SPACE.

 LINKAGE SECTION.

 01 DFHCOMMAREA.
 03 APPLID PIC X(8).
 03 FILLER-1 PIC X(1) VALUE SPACE.
 03 DATE-AREA PIC X(8).
 03 FILLER-2 PIC X(1) VALUE SPACE.
 03 TIME-AREA PIC X(8).
 03 FILLER-3 PIC X(1) VALUE SPACE.

 PROCEDURE DIVISION.

 MOVE DFHCOMMAREA TO COMMAREA-IN.
 MOVE SPACES TO DFHCOMMAREA.

 EXEC CICS ASSIGN APPLID(APPLID)
 END-EXEC.
244 Java Connectors for CICS

 IF ACTION1 = 'D'
 EXEC CICS DELAY FOR SECONDS(30)
 END-EXEC.

 IF ACTION1 = 'A'
 EXEC CICS ABEND ABCODE(ABEND-CODE)
 END-EXEC.

 IF ACTION1 = 'S'
 EXEC CICS PERFORM SHUTDOWN IMMEDIATE
 END-EXEC.

 EXEC CICS ASKTIME ABSTIME(ABSTIME)
 END-EXEC.

 EXEC CICS FORMATTIME
 ABSTIME(ABSTIME)
 DDMMYY(DATE-AREA)
 DATESEP("/")
 TIME(TIME-AREA)
 TIMESEP(":")
 END-EXEC.

 EXEC CICS WRITEQ TD
 QUEUE("CSMT")
 FROM(DFHCOMMAREA)
 LENGTH(27)
 RESP(RESP)
 END-EXEC.

 WS-RETURN SECTION.
 EXEC CICS RETURN
 END-EXEC.
 WS-RETURN-EXIT.
 EXIT.
 Appendix C. Sample CICS programs 245

C.3 EPIPROG
This is a very simple non-conversational 3270 application that returns just one
BMS map, containing 3 fields containing the date, time and APPLID from the
CICS region. The 3270 screen returned by EPIPROG is shown in Figure C-2

Figure C-1 EPIP 3270 output

It was used in Chapter 8, “CCI applications: EPI based” on page 181 and
Chapter 8, “CCI applications: EPI based” on page 181. The COBOL source code
is shown in Figure C-3.

Example: C-3 EPIPROG COBOL program

IDENTIFICATION DIVISION.

 PROGRAM-ID. EPIPROG.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 * BMS MAP
 COPY EPIMAPS.
 * STANDARD DEFINITIONS FOR BMS
 COPY DFHAID.
 01 ABSTIME PIC X(8).
 01 ABSTIMEX PIC X(8).
 LINKAGE SECTION.
 PROCEDURE DIVISION.
 MOVE LOW-VALUES TO EPIMAPO.
 EXEC CICS ASSIGN APPLID(APPLIDO)
 END-EXEC.

 EPIPROG OUTPUT

 APPLID: SCSCPAA6
 DATE: 12/12/01
 TIME: 12:37:27

246 Java Connectors for CICS

 EXEC CICS ASKTIME ABSTIME(ABSTIME)
 END-EXEC.
 EXEC CICS FORMATTIME
 ABSTIME(ABSTIME)
 DDMMYY(DATEO)
 DATESEP("/")
 TIME(TIMEO)
 TIMESEP(":")
 END-EXEC.
 EXEC CICS SEND MAP('EPIMAP')
 MAPSET('EPIMAPS')
 ERASE FREEKB
 END-EXEC.
 EXEC CICS RETURN
 END-EXEC.
 EXIT.

The BMS mapset used by EPIPROG is shown in Figure C-4. Note that a BMS
mapset can contain multiple BMS maps but in our example the mapset
EPIMAPS contains only one map, EPIMAP.

Example: C-4 EPIMAPS BMS mapset

EPIMAPS DFHMSD TYPE=&SYSPARM, X
 LANG=COBOL, X
 MODE=OUT, X
 CTRL=FREEKB, X
 STORAGE=AUTO, X
 DSATTS=(COLOR,HILIGHT), X
 MAPATTS=(COLOR,HILIGHT), X
 TIOAPFX=YES

EPIMAP DFHMDI SIZE=(24,80), X
 LINE=1, X
 COLUMN=1

 DFHMDF POS=(1,1), X
 LENGTH=14, X
 ATTRB=(ASKIP,PROT), X
 INITIAL='EPIPROG OUTPUT'
 DFHMDF POS=(3,1), X
 LENGTH=7, X
 ATTRB=(ASKIP,PROT), X
 INITIAL='APPLID:'
APPLID DFHMDF POS=(3,15), X
 LENGTH=8, X
 ATTRB=(ASKIP,PROT)
 DFHMDF POS=(4,1), X
 LENGTH=5, X
 Appendix C. Sample CICS programs 247

 ATTRB=(ASKIP,PROT), X
 INITIAL='DATE:'
DATE DFHMDF POS=(4,15), X
 LENGTH=8, X
 ATTRB=(ASKIP,PROT)
 DFHMDF POS=(5,1), X
 LENGTH=5, X
 ATTRB=(ASKIP,PROT), X
 INITIAL='TIME:'
TIME DFHMDF POS=(5,15), X
 LENGTH=8, X
 ATTRB=(ASKIP,PROT)

 DFHMSD TYPE=FINAL
 END
248 Java Connectors for CICS

C.4 SWAP
This is a simple pseudo-conversation 3270 application. It returns a single map,
containing two input fields. The input to these two fields is then swapped when
the Enter key is pressed. Note that this application is based on the SWAPPER
sample provided by VisualAge for Java V4. The 3270 screen displayed by the
application is shown in Figure C-2

Figure C-2 SWAP 3270 output

The sample was used in Chapter 8, “CCI applications: EPI based” on page 181.
The COBOL source code is shown in Example C-5.

Example: C-5 SWAP COBOL program

 IDENTIFICATION DIVISION.

 PROGRAM-ID. SWAP.

 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 TMP PIC A(5).
 01 COMMUNICATION-AREA PIC X.
 01 END-OF-SESSION-MESSAGE PIC X(13) VALUE 'SESSION ENDED'.
 * BMS SYMBOLIC MAP
 COPY SWAPSET.
 * STANDARD DEFINITIONS FOR BMS.
 COPY DFHAID.
 LINKAGE SECTION.
 * USE TO INDICATE WHETHER FIRST INVOCATION OF PROGRAM OR NOT.

 SWAPPER

 Enter values in the fields, then press enter.

 Field 1 _____

 Field 2 _____

 Appendix C. Sample CICS programs 249

 01 DFHCOMMAREA PIC X.
 PROCEDURE DIVISION.
 START-PARA.
 EVALUATE TRUE

 WHEN EIBCALEN = ZERO
 * FIRST INVOCATION OF THE PROGRAM
 MOVE LOW-VALUE TO SWAPMAPO
 PERFORM SEND-SWAPMAP-CLEAR
 WHEN EIBAID = DFHCLEAR
 MOVE LOW-VALUE TO SWAPMAPO
 PERFORM SEND-SWAPMAP-CLEAR
 WHEN EIBAID = DFHPA1 OR DFHPA2 OR DFHPA3
 CONTINUE
 WHEN EIBAID = DFHPF3 OR DFHPF12
 PERFORM SEND-TERMINATION-MESSAGE
 EXEC CICS RETURN
 END-EXEC
 WHEN EIBAID = DFHENTER
 PERFORM PROCESS-MAP
 WHEN OTHER
 CONTINUE
 END-EVALUATE.
 EXEC CICS
 RETURN TRANSID('SWAP')
 COMMAREA(COMMUNICATION-AREA)
 LENGTH(1)
 END-EXEC.
PROCESS-MAP.
 PERFORM RECEIVE-SWAPMAP.
 PERFORM SWAP-PROCESS.
 PERFORM SEND-SWAPMAP.
 *
 RECEIVE-SWAPMAP.
 EXEC CICS
 RECEIVE MAP('SWAPMAP')
 MAPSET('SWAPSETM')
 INTO(SWAPMAPI)
 END-EXEC.
 *
 SEND-SWAPMAP.
 EXEC CICS
 SEND MAP('SWAPMAP')
 MAPSET('SWAPSETM')
 FROM(SWAPMAPO)
 DATAONLY
 END-EXEC.
 *
 SEND-SWAPMAP-CLEAR.
250 Java Connectors for CICS

 EXEC CICS
 SEND MAP('SWAPMAP')
 MAPSET('SWAPSETM')
 FROM(SWAPMAPO)
 ERASE
 END-EXEC.
 *
 SEND-TERMINATION-MESSAGE.
 EXEC CICS
 SEND TEXT FROM(END-OF-SESSION-MESSAGE)
 ERASE
 FREEKB
 END-EXEC.
 *
 SWAP-PROCESS.
 MOVE OP1I TO TMP.
 MOVE OP2I TO OP1O.
 MOVE TMP TO OP2O.

The BMS mapset used by SWAP is shown in Example C-6. Note that a BMS
mapset can contain multiple BMS maps but in our example the mapset
SWAPSET contains only one map, SWAPMAP.

Example: C-6 SWAPSET BMS mapset

WAPSET DFHMSD TYPE=&SYSPARM, X
 LANG=COBOL, X
 MODE=INOUT, X
 TERM=3270-2, X
 CTRL=FREEKB, X
 STORAGE=AUTO, X
 DSATTS=(COLOR,HILIGHT), X
 MAPATTS=(COLOR,HILIGHT), X
 TIOAPFX=YES
SWAPMAP DFHMDI SIZE=(24,80), X
 LINE=1, X
 COLUMN=1
 DFHMDF POS=(1,1), X
 LENGTH=7, X
 ATTRB=(NORM,PROT), X
 COLOR=BLUE, X
 INITIAL='SWAPPER'
 DFHMDF POS=(3,1), X
 LENGTH=45, X
 ATTRB=(NORM,PROT), X
 COLOR=BLUE, X
 INITIAL='Enter values in the fields, then press enter.'
 DFHMDF POS=(5,1), X
 Appendix C. Sample CICS programs 251

 LENGTH=8, X
 ATTRB=(NORM,PROT), X
 COLOR=GREEN, X
 INITIAL='Field 1 '
OP1 DFHMDF POS=(5,12), X
 LENGTH=5, X
 ATTRB=(NORM,UNPROT,IC), X
 COLOR=TURQUOISE, X
 INITIAL='_____'
 DFHMDF POS=(7,1), X
 LENGTH=8, X
 ATTRB=(NORM,PROT), X
 COLOR=GREEN, X
 INITIAL='Field 2 '
SOP2 DFHMDF POS=(7,12), X
 LENGTH=5, X
 ATTRB=(NORM,UNPROT), X
 COLOR=TURQUOISE, X
 INITIAL='_____'
 DFHMDF POS=(24,1), X
 LENGTH=20, X
 ATTRB=(NORM,PROT), X
 COLOR=BLUE, X
 INITIAL='F3=Exit F12=Cancel'
DUMMY DFHMDF POS=(24,79), X
 LENGTH=1, X
 ATTRB=(DRK,PROT,FSET), X
 INITIAL=' '

 DFHMSD TYPE=FINAL
 END
252 Java Connectors for CICS

C.5 TRADER
This appendix describes the 3270 COBOL Trader application used as the basis
of the enterprise bean examples provided in Part 3, “Connecting to 3270 based
CICS transactions” on page 153 of this redbook.

We start by providing a description of how the original 3270 based version of the
Trader application functions. We then provide a summary of what definitions are
required when installing the Trader application in your CICS system.

To obtain the sample COBOL Trader application and accompanying JCL, refer to
Appendix D, “Additional material” on page 261.

The 3270 Trader COBOL application
Trader, written in COBOL, uses the VSAM access method for file access and the
CICS 3270 BMS programming interface. It is a pseudo-conversational
application, meaning that a chain of related non-conversational CICS
transactions is used to convey the impression of a conversation to the users as
they go through a sequence of screens that constitute a business transaction.
The application consists of two modules: TRADERPL, which contains the 3270
presentation logic; and TRADERBL, which contains the business logic.
TRADERPL invokes TRADERBL using an EXEC CICS LINK and passing a
COMMAREA structure for input and output. TRADERBL contains logic to query
and write to the persistent VSAM data, stored in two files the company file and
the customer file.

Figure C-3 Trader application structure

customer
file

company
fileTRADERBLTRADERPL

 C
 O
 M
 M
 A
 R
 E
 A

 C
 O
 M
 M
 A
 R
 E
 A

LINK
Presentation

Logic

Business

Logic

3270

BMS

VSAM
 Appendix C. Sample CICS programs 253

At each step, the application presents a set of options. The user makes a choice,
then presses the required key in order to send their selections back to the
application. The application performs the necessary actions based on the user’s
choice and presents the results together with any possible new options. The
application has a strict hierarchical menu structure which allows the user to
return to the previous step by using the PF3 key.

3270 application flows
In this section, we describe a typical business transaction when using the 3270
Trader application:

1. The program TRADERPL is invoked on a 3270 capable terminal by entering
the initial CICS transaction identifier (TRAD). TRADERPL calls TRADERBL,
passing an inter-program COMMAREA of 400 bytes. TRADERBL expects the
COMMAREA to contain a request type and associated data. There are three
request types: Get_Company to return a company list, Share_Value to return
a list of share values, or Buy_Sell to buy or sell shares. In this step the
request type is Get_Company.

When TRADERBL receives a Get_Company request, it browses the company
file and returns the first four entries to TRADERPL. At this point the user has
not entered any request, but the application assumes that a Get_Company
request will be following. TRADERPL then sends the signon display (T001
shown in Figure C-4), which prompts for a user ID and password. The list of
companies is stored in the COMMAREA associated with the terminal when
the TRAD transaction ends, so that it will be available at the next task in the
pseudo-conversational sequence.

Figure C-4 Trader signon display

Share Trading Demonstration TRADER.T001

 Share Trading Manager: Logon

 Enter your User Name:

 Enter your Password:

 --
 PF3=Exit PF12=Exit
254 Java Connectors for CICS

2. The next transaction invokes TRADERPL, which receives the signon display
(T001) and the saved COMMAREA from step 1. If security is active in the
CICS region the user ID and password entered will be used to signon to
CICS. Then the using the company data acquired in step 1, TRADERPL
sends the company selection display (T002), the format of which is shown in
Figure C-5. TRADERPL then returns, specifying the next transaction to run
and the associated COMMAREA.

Figure C-5 Company selection display

3. The user selects the company to trade from the Company Selection display,
and presses Enter. The program TRADERPL is invoked and sends the
Options display (T003, shown in Figure C-6) to the terminal. The user can
now decide whether to buy, sell, or get a new real-time quote. TRADERPL
returns, specifying the next transaction to run and the associated
COMMAREA.

 Share Trading Demonstration TRADER.T002

 Share Trading Manager: Company Selection

 1. Casey_Import_Export

 2. Glass_and_Luget_Plc

 3. Headworth_Electrical

 4. IBM

 Please select a company (1,2,3 or 4) :

 PF3=Return PF12=Exit
 Appendix C. Sample CICS programs 255

Figure C-6 Options menu display

4. The user then selects Option 1 and presses the Enter key. TRADERPL is
invoked and determines that the user's request is a Share_Value request
type. TRADERPL calls TRADERBL, passing the request type and the
company selected earlier. TRADERBL reads the customer file to determine
how many shares are held, then reads the company file to determine the
price history, and returns the information to TRADERPL. TRADERPL uses
this data to build a Real-Time Quote display (T004) as illustrated in
Figure C-7. This display shows the recent history of share values for the
company chosen, the number of shares held with this company, and the total
value of these shares. TRADERPL returns, specifying the next transaction to
run and the associated COMMAREA data.

 Share Trading Demonstration TRADER.T003

 Share Trading Manager: Options

 1. New Real-Time Quote

 2. Buy Shares

 3. Sell Shares

 Please select an option (1,2 or 3):

 PF3=Return PF12=Exit
256 Java Connectors for CICS

Figure C-7 Real-time quote display

5. The user now presses PF3 to go back to the Options Menu. TRADERPL is
invoked and sends the Options display (T003) to the terminal (repeating the
actions of Step 3), and returns, specifying the next transaction to run and the
associated COMMAREA data.

6. The user now requires to purchase shares, so selects Option 2 and presses
the Enter key. Program TRADERPL receives map T003 and determines that
the user wants to buy shares, and sends the Shares-Buy display (T005)
shown in Figure C-8. TRADERPL returns, specifying the next transaction to
run and the associated COMMAREA.

 Share Trading Demonstration TRADER.T004

 Share Trading Manager: Real-Time Quote

 User Name: TRADER

 Company Name: IBM

 Share Values: Commission Cost:
 NOW: 00163.00 for Selling: 015
 1 week ago: 00157.00 for Buying: 010
 6 days ago: 00156.00
 5 days ago: 00159.00
 4 days ago: 00161.00
 3 days ago: 00160.00
 2 days ago: 00162.00 Number of Shares Held: 0100
 1 day ago: 00163.00 Value of Shares Held: 000000000.00

 PF3=Return PF12=Exit
 Appendix C. Sample CICS programs 257

Figure C-8 Shares - Buy display

7. Program TRADERPL receives the T005 screen and builds a Buy_Sell request
COMMAREA which is passed to program TRADERBL. TRADERBL reads the
company file and then performs a READ for UPDATE and REWRITE to the
customer file to update the customers share holdings. The success of the
request is returned to TRADERPL in the COMMAREA, and TRADERPL
sends the Options display (T003) reporting the successful buy to the user.
TRADERPL returns, specifying the next transaction to run and the associated
COMMAREA.

8. Next the user checks his share holdings by repeating Step 4.

9. The user returns to the options screen by repeating Step 5.

10.The business transaction is completed by the user pressing PF12, which
performs an EXEC CICS SEND TEXT to write a message to the terminal and
reports that the session is complete. TRADERPL then executes the final
EXEC CICS RETURN command. No COMMAREA is specified because the
pseudo-conversation is over, and there is no conversation state data to retain.

Share Trading Demonstration TRADER.T005

 Share Trading Manager: Shares - Buy

 User Name: TRADER

 Company Name: IBM

 Number of Shares to Buy: 100

 --
 PF3=Return PF12=Exit
258 Java Connectors for CICS

CICS resource definitions
To install the COBOL Trader application the following CICS resources need to be
created:

� Files

Trader uses the following two VSAM files:

– COMPFILE

This file is used to store the list of companies and associated share prices.
It can be created using the supplied JCL TRADERCOCJL.TXT which requires
as input the file TRADERCODATA.TXT

– CUSTFILE

This file is used to store the list of users and share holdings. It can be
created using the supplied JCL TRADERCUJCL.TXT

� Transactions

The 3270 version of Trader requires just one transaction TRAD, which should
specify the program TRADERPL

� Programs

CICS program definitions are only required if program autoinstall is not active.
The 3270 trader application uses two COBOL programs which will need to
compiled and placed in a dataset in your CICS region DFHRPL
concatenation. The COBOL source code for these applications is available
with the sample source code with this book. For details on how to download
this refer to Appendix D, “Additional material” on page 261.

– TRADERPL

This contains the 3270 presentation logic and is invoked by transaction
TRAD.

– TRADERBL

This contains the business logic and is invoked by program TRADERPL,
or it can be linked to from another application that contains its own
presentation logic, such as a Java servlet.

� Mapset

Trader uses the Mapset NEWTRAD which comprises the maps T001, T002,
T003, T004, T005 and T006. The Mapset is supplied in the file NEWTRAD.TXT
and will need to be assembled and link-edited, and the load module placed in
a dataset in your CICS region DFHRPL concatenation.

For further information on creating the resource definitions for Trader, refer to the
supplied file TRADERRDO.TXT, which contains the output of a CSD extract for the
Trader application.
 Appendix C. Sample CICS programs 259

260 Java Connectors for CICS

Appendix D. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246401

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6401.

D

© Copyright IBM Corp. 2002 261

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook contains the
following directory structure:

� CICS-COBOL: CICS source used in this book, including the following
programs:

– epimap.bms
– swapset.bms
– eciadder.txt
– ecidconv.txt
– eciprog.txt
– epiprog.txt
– swap.txt

� The EJB_components directory containing the WAR, and JAR files used in
Chapter 6, “CCI applications in a managed environment” on page 111.

� Java: Java source code used in this book includes the following packages:

– itso.cics.eci
– itso.cics.eci.j2ee
– itso.cics.eci.j2ee.jndi
– itso.cics.eci.j2ee.trader
– itso.cics.epi
– itso.cics.epi.j2ee
– itso.cics.esi

� Trader-COBOL: Source code and other files for creating the Trader CICS
application.

� The VAJ_repositories directory containing the VisualAge for Java
repositories for use with Chapter 5, “CCI applications: ECI based” on page 71
and Chapter 8, “CCI applications: EPI based” on page 181. Note that
respositories are used for these chapters to store Command bean meta
information, which is not stored in the provided Java source code.

Tip: For information on how to obtain the JAR files (cicsj2ee.jar,
ccf2.jar and connector.jar) required by some of our samples refer to
Appendix A, “Configuring the CICS connectors in VisualAge for Java”
on page 219.
262 Java Connectors for CICS

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 2 MB minimum
Operating System: Windows NT, or 2000.
Processor: Intel 486 or higher
Memory: 64 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material Zip file into this folder. This will create the directories CICS-COBOL,
Trader-COBOL and Java containing the samples and read-me files with further
instructions.
 Appendix D. Additional material 263

264 Java Connectors for CICS

acronyms
AOR application-owning region

API Application Programming
Interface

ASCII American Standard Code for
Information Interchange

AWT abstract windowing toolkit

BMP bean-managed persistence

CCI Common Client Interface

CCF Common Connector
Framework

CMP container managed
persistence

CORBA Component Object Request
Broker Architecture

CTG CICS Transaction Gateway

CWS CICS Web support

DBMS database management
system

DNS Domain Name System

DPL distributed program link

EAB Enterprise Access Builder

EAR Enterprise Application Archive

EBCDIC Extended Binary Coded
Decimal Interchange Code

ECI External Call Interface

EJB Enterprise JavaBeans

EJS Enterprise Java Server

EIS Enterprise Information
Systems

EPI External Presentation
Interface

ESI External Security Interface

ESM External Security Manager

EXCI External CICS Interface

Abbreviations and
© Copyright IBM Corp. 2002
FOR file-owning region

FTP File Transfer Protocol

GIOP General Inter-ORB Protocol

GUI graphical user interface

HFS Hierarchical File System

HTML Hypertext Transfer Protocol

HTTP Hypertext Markup Language

IDE Integrated development
environment

IDL interface definition language

IIOP Internet Inter-ORB Protocol

IOR interoperable object reference

ISC inter-system communication

J2EE Java 2 Enterprise Edition

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JPDA Java Platform Debugger
Architecture

JSDK Java Servlet Development Kit

JSP Java Server Page

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LPAR logical partition

LUW logical unit of work

OMG Object Management Group

OS/390 operating system 390

OTS object transaction service

PB Persistence Builder
 265

PEM Password Expiration
Managment

RDBMS relational database
management system

RMI Remote Method Invocation

RPC remote procedure call

SDK Software Development Kit

SQL structured query language

SQLJ SQL Java

SSL secure socket layer

TCB task control block

TCP/IP Transmission Control
Protocol/Internet Protocol

UML Unified Modeling Language

UOW unit of work

URL Uniform Resource Locator

USS Unix System Services

VAJ VisualAge for Java

WAR Web Application Archive

WTE WebSphere Test
Environment

XMI XML metadata interchange

XML Extensible Markup Language
266 Java Connectors for CICS

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 268.

� Revealed! CICS Transaction Gateway with More CICS Clients Unmasked,
SG24-5277

� CCF Connectors and Databases Connections using WebSphere Advanced
Edition, SG24-5514

� Revealed! Architecting Web Access to CICS, SG24-5466

� CICS Transaction Gateway V3.1 The WebSphere Connector for CICS,
SG24-6133

� Enterprise JavaBeans for z/OS and OS/390, CICS Transaction Server V2.1,
SG24-6284.

Other resources
These Web sites are relevant as further information sources:

� CICS Transaction Gateway software downloads
http://www.ibm.com/software/ts/cics/downloads

� CICS Transaction Gateway library
http://www-3.ibm.com/software/ts/cics/library/manuals/index40.html

� WebSphere Application Server InfoCenter
http://www.ibm.com/software/webservers/appserv/infocenter.html

Referenced Web sites
These Web sites are also relevant as further information sources:

� Sun J2EE connector specification
http://java.sun.com/j2ee/download.html#connectorspec
© Copyright IBM Corp. 2002 267

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/ts/cics/downloads
http://java.sun.com/j2ee/download.html#connectorspec
http://www.ibm.com/software/ts/cics/downloads
http://www-3.ibm.com/software/ts/cics/library/manuals/index40.html
http://www-3.ibm.com/software/ts/cics/library/manuals/index40.html
http://www.ibm.com/software/ts/cics/downloads

� Whitepaper: Using J2EE Resource Adapters in a Non-managed Environment
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/
0109_kelle.html

� Connector Architecture for WebSphere Application Server
http://www6.software.ibm.com/dl/connarch/connarch-p

� Coexistence of WebSphere Studio Application Developer with VisualAge for
Java
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0110_searle/s
earle.html

� WebSphere Studio Application Developer Integration Edition
http://www.ibm.com/software/ad/studiointegration/

� CICS announcement letters
http://www-4.ibm.com/software/ts/cics/announce/

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
268 Java Connectors for CICS268 Java Connectors for CICS

http://www.ibm.com/software/ad/studiointegration/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0110_searle/searle.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0110_searle/searle.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html
http://www-4.ibm.com/software/ts/cics/announce/

Index

A
abends, error handling 172
AIX 12
Application Assembly Tool (AAT) 125
application server 18
ASCII 228
asynchronous ECI calls 44, 189

B
base classes, CTG 36
basic mapping support (BMS) 195
big-endian 236
BMSMapConvert, utility 166

C
CESN, signon transaction 31, 175, 177, 212
CICS Connector for CICS TS 6
CICS TS for OS/390 12
CICS TS for VSE/ESA 12
CICS/ESA V4.1 12
CICS/VSE 2.3 12
CICSConnectionSpec 6, 211
CicsCpRequest class 36, 233–234
cicsj2ee.jar 127, 225
COBOL, data types 240
Command beans 85, 194
Command editor 199
Command migrator 210
Common Client Interface (CCI) 19, 21, 182
Common Connector Framework (CCF) 6, 20, 210
Configuration tool, CTG 15
Connection management 24
Connection object 185
Connection pooling 25, 112
Connector Architecture for WebSphere Application
Server 115
connector.jar 127, 222
container managed authentication 114
CPMI, mirror transaction 47
ctgclient.jar 7, 36, 225
ctgserver.jar 225
CTIN, Terminal install transaction 159, 161, 174
© Copyright IBM Corp. 2002
D
data conversion 227
deployment descriptor 125, 132
DFHCCNV, data conversion program 232
DFHCNV templates 123, 232
DFHMDF statements 165, 247
DFHMIRS, CICS mirror program 232

E
eablib.jar 127
EBCDIC 43, 47, 59, 234, 238
ECI_Listsytems function 14
ECIADDER, COBOL program 56, 95, 242
ECIInteractionSpec class 6, 75
ECIPROG 42, 74, 120, 244
ECIRequest class 7, 39, 41
EJB Extension Editor 138
Endian 238
Enterprise Access Builder (EAB) 6, 77, 127, 193,
221
Enterprise Access Builder (EAB), Test Client 200
Enterprise Application Archive (EAR) 150
Enterprise Information Systems (EIS) 7, 18
EPI beans 5
EPI support classes 5
EPIFieldRecord 188
EPIInteractionSpec 6
EPIInteractionSpec class 185
EPIManagedConnectionFactory 185
EPIPROG, COBOL sample 155, 164, 187, 246
EPIScreenRecord 187
ESIRequest class 40
exception classes, ECI 106
exception classes, EPI 169
exception handling framework, with ECIRequest 66
EXCI 36
EXEC CICS CHANGE PASSWORD 53
EXEC CICS LINK 253
EXEC CICS READ 258
EXEC CICS REWRITE 258
EXEC CICS SEND TEXT 258
EXEC CICS SIGNON 175, 177
EXEC CICS VERIFY PASSWORD 53
 269

extended logical units of work 56, 95

F
Field class 162
floating point format 237

G
general reply solicitation calls 44
get/use/cache 114
get/use/close 114, 133–134
global transactions 26

H
HP-UX 12

J
J2C 115
J2EE Connector Architecture 17–18
Java Record Framework 6, 79, 237
java.io.IOException 64, 108
JavaGateway class 7, 36–37

configuration 38
program flow 37

JCICS, link() method 7
JDBC 22
JNDI 101, 185, 200

L
last agent optimization 28
last resource optimization 28, 114
Linux, for S/390 12
little-endian 236
local gateway 38
local transaction optimization 27, 114
local transactions 25
LogonLogoff class 213

M
managed connection factory 185
managed environment 20, 111
Map class 166
message qualifiers 45
MODELTERM definition, in CTG.INI 160

N
navigator 203

network protocols, supported with CTG 38
non-managed environment 20
numeric data 230

O
OS/390, CTG suppot 14

P
Password Expiration Management (PEM) 13, 40,
53
Persistent Name Server 103
Program flow, ECI request 41
promote properties 205
protocol handler, CTG 13
protocols, supported with CTG 38
pseudo-conversational transactions 189, 203

R
RACF 11, 14
RAR file 117
recjava.jar 127
Record beans 194
Redbooks Web site 268

Contact us xi
reply solicitation calls 40

general 44
specific 45

resource adapter 7, 18
Resource Adapter Archive 19
resource adapter, ECI 29, 116
resource adapter, EPI 30, 183
resource reference 132, 137–138, 151
ResourceException class 186
return codes, ECI 64, 107
return codes, ESI 65

S
sample source code 241
Screen class 162
screenable.jar 225
Security management 29, 114
servlets 4
setLogonLogoffClass() 185
signon capable terminal 174, 212
signon incapable terminal 174, 212
SmartGuides

Create Class 205
270 Java Connectors for CICS

Create Command 85, 197
Create Record from Record Type 196, 237
Import BMS to Record Type 196
Import COBOL to Record Type 77, 80
Migrate to Connector Architecture 91, 211

Specific reply solicitation calls 45
Status information calls 39
Streamable, interface 191
Sun Solaris 12
SWAPPER, COBOL sample 189, 249
synchronous ECI calls 40, 189
System contracts 17, 19

T
T class, CTG tracing 61
Terminal class 159
tracing 209

ECI CCI 78
ECIRequest 61
EPI CCI 192

Trader, COBOL application 124, 253
transaction abend 192
transaction management 25
two phase commit 26

U
Unicode 43, 47, 59, 77, 228
USEDFLTUSER 175
USEOEMCP, CTG setting 233

V
Visual Composition Editor 205
VisualAge for Java 193

configuring the CICS connectors 219
See also Enterprise Access Builder
See also Java Record Framework
See also SmartGuides

W
wait/notify mechanism 50
WebSphere for z/OS, CICSEXCI connector 8
WebSphere Studio Application Developer 125
WebSphere Test Environment 101, 104, 141, 220
WebSphere, use in a managed environment 149
Windows NT and 2000 12

X
XAResource 26

Z
z/OS 8
 Index 271

272 Java Connectors for CICS

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

Java Connectors for CICS: Featuring the J2EE Connector Architecture

®

SG24-6401-00 ISBN 0738423904

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Java Connectors
for CICS
Featuring the J2EE Connector Architecture

Use the CICS J2EE
resource adapters
and deploy
applications to
WebSphere

Develop applications
using the Enterprise
Access Builder

Understand the J2EE
CCI and the CTG base
classes

Back cover

What is the best method for connecting a Java application to
CICS? There are a wealth of options that are available, ranging
from using the Java class libraries that are shipped with the
CICS Transaction Gateway (CTG), to using the Common Client
Interface (CCI) component of the Java 2 Enterprise Edition
(J2EE) Connector Architecture. There are also important
application development choices to make, such as whether to
code to an API directly, or to use a tool such as VisualAge for
Java’s Enterprise Access Builder.

This IBM Redbook examines the strategic Java connection
methods for CICS. The focus is on the use of the J2EE
Connector Architecture, which is a new Java standard for
connecting to legacy Enterprise Information Systems such as
CICS. This builds upon the previous IBM Common Connector
Framework (CCF) and provides enhanced facilities for
deploying into a managed environment, where connection
pooling, transactions, and security are managed by a J2EE
capable application server such as WebSphere Application
Server.

We provide comprehensive code examples for the J2EE CCI,
as well as the CTG base classes, including the ECIRequest,
ESIRequest, and the EPI support classes.

	Front cover
	Contents
	Special notices
	IBM trademarks
	Preface
	The team that wrote this redbook
	Notice
	Comments welcome

	Part 1 Introduction
	Chapter 1. Java connectors for CICS
	1.1 CICS Transaction Gateway
	1.2 CTG APIs
	1.3 CICS CCF connector
	1.4 CICS Connector for CICS TS
	1.5 J2EE connectors

	Chapter 2. CICS Transaction Gateway
	2.1 CTG: interfaces
	2.2 CTG: infrastructure
	2.2.1 Gateway daemon
	2.2.2 Client daemon
	2.2.3 Configuration tool
	2.2.4 Terminal Servlet

	Chapter 3. CICS and the J2EE Connector Architecture
	3.1 J2EE Connector Architecture
	3.1.1 Components of the J2EE Connector Architecture
	3.1.2 Managed and non-managed environments
	3.1.3 The Common Connector Framework

	3.2 Common Client Interface
	3.2.1 CCI overview
	3.2.2 Using the CCI classes

	3.3 System contracts
	3.3.1 Connection management
	3.3.2 Transaction management
	3.3.3 Security management

	3.4 CICS resource adapters
	3.4.1 ECI resource adapter
	3.4.2 EPI resource adapter

	Part 2 Connecting to COMMAREA based CICS programs
	Chapter 4. ECI and ESI applications
	4.1 Base classes overview
	4.1.1 JavaGateway overview
	4.1.2 ECIRequest overview
	4.1.3 ESIRequest overview

	4.2 Synchronous ECI calls
	4.2.1 ECIRequest configuration
	4.2.2 Program flow

	4.3 Asynchronous ECI calls
	4.3.1 Reply solicitation calls
	4.3.2 Program flow
	4.3.3 Callback objects

	4.4 ESI calls
	4.5 Extended logical units of work
	4.6 Tracing
	4.7 Exception handling
	4.7.1 ECI return codes
	4.7.2 ESI return codes
	4.7.3 Implementing an exception handling framework

	Chapter 5. CCI applications: ECI based
	5.1 Using the CCI
	5.1.1 Writing a simple CCI application
	5.1.2 Tracing

	5.2 Using the Enterprise Access Builder
	5.2.1 Creating a Record out of a COMMAREA
	5.2.2 Creating a Command bean
	5.2.3 Migrating a CCF application

	5.3 Asynchronous calls
	5.4 Extended logical units of work
	5.5 Using JNDI
	5.5.1 Using JNDI with the CCI
	5.5.2 Using JNDI with the EAB
	5.5.3 Using JNDI with a Command bean

	5.6 Exception handling
	5.6.1 Developing an exception handling routine

	Chapter 6. CCI applications in a managed environment
	6.1 WebSphere managed environment
	6.2 Configuring WebSphere Application Server
	6.3 Creating the CCI application
	6.3.1 Configuring WebSphere Studio Application Developer
	6.3.2 Creating an enterprise bean
	6.3.3 Editing the EJB deployment descriptor

	6.4 Testing the enterprise bean
	6.5 Deploying the application to WebSphere
	6.5.1 Enabling JNDI in the application
	6.5.2 Exporting the application from Application Developer
	6.5.3 Installing the EAR file into WebSphere

	Part 3 Connecting to 3270 based CICS transactions
	Chapter 7. EPI support classes
	7.1 Creating a simple EPI application
	7.1.1 Using the EPIGateway class
	7.1.2 Using the Terminal class
	7.1.3 Using the Screen and Field classes

	7.2 Extending the EPI application
	7.2.1 Using the Map class and the BMSMapConvert utility
	7.2.2 Exception handling

	7.3 Connecting to secured CICS transactions
	7.3.1 Signon capable terminals
	7.3.2 Signon incapable terminals

	Chapter 8. CCI applications: EPI based
	8.1 Using the CCI
	8.1.1 Writing a simple CCI application
	8.1.2 Extending a CCI application
	8.1.3 Tracing

	8.2 Using the Enterprise Access Builder
	8.2.1 Writing a simple EAB application
	8.2.2 Extending an EAB application
	8.2.3 Migrating a CCF application

	8.3 Connecting to secured CICS transactions
	8.3.1 Signon capable terminals
	8.3.2 Signon incapable terminals

	Part 4 Appendices
	Appendix A. Configuring the CICS connectors in VisualAge for Java
	A.1 Installing VisualAge for Java
	A.2 Configuring VisualAge for Java
	A.2.1 Updating the Enterprise Access Builder
	A.2.2 Updating the connector projects with 1.0 specification classes

	Appendix B. Data conversion
	B.1 Conversion within Java
	B.2 Conversion within CICS: DFHCNV templates
	B.3 EAB and the Java Record Framework

	Appendix C. Sample CICS programs
	C.1 ECIADDER
	C.2 ECIPROG
	C.3 EPIPROG
	C.4 SWAP
	C.5 TRADER

	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

